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Abstract: Truncated conical shells are extensively used in space crafts, robots, shelters, domes, tanks and in
machinery or devices. Thus, the study of their vibrational characteristics has long been of interest for the
designers. Moreover, because of the need for light weight designs, composite shell materials have become more
and more common. One of the advantages of composite materials is that one can design directional properties
into them almost on demand. The purpose of this study was to analytically investigate the vibrational behavior

of composite comical shells. Based upon the thin shell theory, the governming equations of motion were derived.
The Galerkin method along with beam mode shapes such as weighting functions was employed. The boundary
conditions were expected to significantly affect the mechanical behavior of shell-type structures and making
use of the beam modal finctions made it possible to examine their role m the mechamcal behavior of conical
shells. The results of the present study, which were in excellent agreement with the existing data from the
literature, indicated the considerable effect of boundary conditions on the natural frequencies of shells.
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INTRODUCTION

Vibration of shells 1s important for different fields of
engineering applications. Accordingly, many efforts have
been made in studying the vibrations of plates and shells
with different scales. Sharma and Mittal (201 0) presented
a review on stress and vibration analysis of composite
plates. Jayakumar et al (2006a) studied multi-layer
cylindrical shells under electro-thermo-mechanical loads.
Jayaloumar ef af. (2006b) also mvestigated on piezoelectric
cylindrical shells under thermal and pressure loads. They
presented a closed-form solution, utilizing a classical
stress formulation approach to carry out elasto-electro-
thermo analysis of generalized plane-strain of a right
cylindrical shell. have

considered the free vibrations of comcal shells due to

circular Some researchers
their use in nozzles. Garnet and Kemper (1964) analyzed
the free vibration of isotropic conical shells using the
Rayleigh Ritz method. Recently, Zhao and Liew (2011)
considered the wvibrations of Functional Graded
Materials (FGMs) conical panels and suggested that the
effect of thickness on the vibration modes of these
structures was an important factor. Investigation of free
vibrations of cylindrical shells rotating at high speed was
performed by Chen et al. (1993). Trie et al. (1984) also

calculated the natural frequencies of truncated conical
shells. Li et al. (2009) conducted a field study on free and
forced vibrations of truncated conical shells using the
Rayleigh Ritz method. Wu and Tee (2001) applied the
Differential Quadrature (DQ) method for studying free
vibrations of conical shells with variable thickness.
Generalized Differential Quadrature (GDQ) method was
performed for the first time by Shu (1996) with square
differential correction method for the vibration analysis of
layered isotropic comical shells. Civalek (2007) used the
Discrete Singular Convolution (DSC) to investigate the
frequency response of conical shells. Hu et al. (2002)
studied the vibrations of composite twisted conical shells
with respect to the strain tensor. Sofiyev et al (2009)
studied the vibrations of orthotropic non-homogeneous
conical shells with free boundary conditions.
Tripatht et al. (2007) studied the free vibration of
composite conical shells with random material properties
of the finite element method. However, most of the
previous works have been conducted in order to simply
support boundary conditions. Since boundary conditions
may have a significant effect on the response of structural
vibrations, mn this study, the free vibration of composite
conical shells was investigated under various boundary
conditions using the solution of beam function and
Galerkin method.
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GOVERNING EQUATIONS

According to Fig. 1 and 2, the governing equations
of the comcal shell with the length of L, thuckness of h
and radii of R, and R, on the two ends of the cone and
half angle of the head o, based on the approximate
extension of Chen et al. (1993) were:
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where, p is the average density in the z direction. The
resultant forces and moments can be defined as:
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Fig. 1: Top and front view of a truncated conical shell

Fig. 2: Side view of a truncated comcal shell

In the above equation, A, B; and D; are stiffness
coefficients. Stramn and curvature in the middle of the shell
were as follows:
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Using Eqg. 1 to 3, the governing equations can be
obtained based on the movement as follows:
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InEq. 4, L, are derivative cperators.
SOLVING THE GOVERNING EQUATIONS

To use Galerkin method for solving the governing
equations, displacement field functions must be guessed
at first. The field should be set in such a way to satisfy
the boundary conditions. Displacement field was
proposed as follows:

uix,0,t)= A%cos(nﬂ)sin (o),

(5)

v(x,0,t)=Bo(x)sin (n0)sin (emt),
W (x,0,1)=Ch(x)cos(nd)sin (eof)
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Table 1: Comparison of frequency parameters for an isotropic conical shell with a simply support boundary conditions having different vertex angles

p=30° p = 45° p=60°
n Iric et al. (1984) Lietal (20090  Present Tricetad. (1984) Lietal (2009)  Present Iricetal (1984) Lietdd (2009)  Present
2 0.7910 0.8431 0.8405 0.6879 0.7642 0.7639 0.5722 0.6342 0.6342
3 0.7284 0.7416 0.7375 0.6973 0.7211 0.7204 0.6001 0.6236 0.6235
4 0.6352 0.6419 0.6368 0.6664 0.6747 0.6737 0.6054 0.6146 0.6144
5 0.5531 0.5590 0.5536 0.6304 0.6336 0.6325 0.6077 0.6113 0.6111
6 0.4949 0.5008 0.4955 0.6032 0.6049 0.6037 0.6159 0.6172 0.6170
7 0.4653 0.4701 0.4661 0.5918 0.5928 0.5919 0.6343 0.6347 0.6346
8 0.4645 0.4687 0.4653 0.5992 0.6005 0.5994 0.6650 0.6653 0.6651

where A, B and C are fixed parameters and represent the
amount of vibrations, n is the number of half waves along
the peripheral, w 1s angular frequency of vibrations and,
d(x) is the meridional function that satisfied boundary
conditions of the geometric scaling. ¢(x) function could
be determined from the shell and beam theories using the
same boundary conditions. By embedding Eq. 5 m Eq. 4,
the residuals R, could be found. These residuals could be
attained by applying operators L; on the same
approximation functions in the following way:

R'=Ljju+L,v+L.w
R"=L,u+L,v+L,w
R"™=L,u+L,,v+L,,w

(6)

The Galerkin method was applied as shown below:
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By integrating the past tlwee equations, a

3%3 homogeneous system was found. To reach the
non-zero solution of this system, the determinant of its
coefficients should be equal to zero. By solving the
equations, natural frequencies and corresponding modes
of vibrations could be found. Numerical results were
presented in order to introduce a dimensionless frequency
parameter m the following way:

o, =nR, "z—h
11

MODEL VERIFICATION

(&)

Table 1 shows the values of frequency parameter for
the simply supported boundary conditions of an 1sotropic
conical shell with different vertex angles. For comparisorn,
some results Irie ef al. (1984) and Li et al. (2009) are also
comprised inthis table. As can be seen, there 1s good

700

Table 2: Comparison of frequency parameters for composite conical shells

h/R*; Wu and Lee (2001) Present
0.01 0.1799 0.1371
0.02 0.2153 0.1788
0.03 0.2397 0.2174
0.04 0.2620 0.2480
0.05 0.2841 0.2709
0.06 0.3061 0.2981
0.07 0.3277 0.3295
0.08 0.3484 0.3647
0.09 0.3680 0.3969
0.10 0.3863 0.4125

agreement between the two sets of results, which
indicates the accuracy and efficiency of the method in
studying the vibrations of conical shells.

Table 2 also shows the possibility of comparing the
present results with the ones by Wu and Lee (2001) as far
as the vibration response of composite comcal shells 1s
concerned. In this table, the frequency parameters of a
two-layer comcal composite shell with two layers of non-
symmetric cross-ply and with the simply supported
boundary conditions m both ends are presented for
different thicknesses. The results confirmed that the
method was suitable for analyzing the vibrations of
composite conical shells.

RESULTS AND DISCUSSION

Figure 3 shows that, in the first mode, the frequency
parameter of a two-layered cross-ply asymmetric comcal
shell with a half 30° cone angle under different boundary
conditions changed relative to the number of axial
half-wave environment. This figure also shows that the
frequency of the shell decreased and then increased for all
types of the boundary conditions with the increase in the
number of half~wave. The results are also confirmed what
Wuand Lee (2001), Trie et al. (1984) and Liet al. (2009) are
claimed using different formulations.

The figure represents the effect of boundary
conditions on the vibration behavior of shells so that the
wave number corresponding to the smallest frequency
(fundamental frequency) 1s different for different
boundary conditions. According to the curves, the
number of half-wave of the fundamental frequency was
equal to 4, 5, 5, 4, 2 and 4 for boundary conditions of F3
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Frequency parameter

Circumferential wave No.

Fig. 3: Changes mn the number of half-wave frequency
parameter setting for composite conical shells

under various boundary conditions

(Free-Siunply Support), CF (Clamped-Free), C3 (Clamped-
Simply Support), FF (Free-Free), CC (Clamped-Clamped)
and 33 (Sunply Support-Simply Support), respectively.

CONCLUSION

This article showed that the Galerkin method with
beam functions can be used well in calculating the natural
frequency of the truncated conical shells with different
boundary conditions. Tt can be also concluded that the
boundary conditions sigmficantly affected the response
of structural vibrations. Tt was also found that no matter
what the boundary conditions were, the frequency of the
shell decreased and then increased with the increase in
the number of half-wave.
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