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Abstract: This study presented a novel quantum-inspired binary gravitational search algorithm method for
solving the optimal power quality monitor placement problem in power systems for voltage sag assessment.
In this algorithm, the standard binary gravitational search algorithm is modified by applying the concept and
principles of quantum behaviour as to improve the search capability with faster convergence rate. The
optimization considers multi objective functions and handles observability constramt determined by the
concept of the topological monitor reach area. The overall objective function consists of three functions which
are based on the number of required monitor, monitor overlapping index and sag severity index. The proposed
algorithm 1s applied on the radial 69-bus distribution system and the IEEE 118-bus transmission system. To
show the effectiveness of the proposed algorithm, its performance is compared to the other optimization
techniques, namely, binary gravitational search algorithm and binary particle swarm optimization and quantum-
inspired binary particle swarm optimization.

Key words: Bmary gravitational search algorithm, quantum computing, voltage sag assessment, multi objective
functions, topological monitor reach area

INTRODUCTION

Power quality has been treated as a prominent 1ssue
which demands utilities to deliver good quality of
electrical power to end users especially to industries
having sensitive equipment. Among all power
disturbances, voltage sags are the most frequent type of
disturbance and give severe impact on sensitive loads
(Bollen and Gu, 2006). It has gain a significant attraction
among researchers to study as to mimmize the voltage
sags and improve the power system’s voltage profile
(Hedayati et al., 2010, Sirjami ef al., 2010, Chettih et al,,
2011). This type of voltage disturbance is defined by TEER
standard 1159-1995 as a voltage reduction in the
RMS voltage to between 0.1 and 0.9 p.u. for duration
between half of a cycle and less than 1 minute
(Vilathgamuwa ef al., 2004). It may cause failure or
malfunction of sensitive equipment in industries
(Shareef et al., 2009) which eventually leads to huge
economic losses. Therefore, it is important to identify the
source location of this power disturbance from the power
quality momnitoring program before any mitigation actions
could be taken (Zayandehroodi et al., 2010).

Voltage sags are usually monitored by means of the
conventional power quality monitoring practice in which
monitors are mstalled at all buses in a power distribution
network. The disadvantage of this approach is the
widespread installation of PQMs. Reducing the number of
monitors will reduce the total cost of power quality
monitoring system and also reduces redundancy of data
being measured by monitors (Eldery et al., 2004).
Furthermore, the measurement at unmomtored buses
could be done using estimation method (Kazemi ef af.,
2011). Thus, some methods are required for determming
minimum nmumber and the strategic location of PQMs to
ensure that voltage sags are captured by the monitors. Tn
Eldery et al. (2004), Olgun et af. (2006), Reis et al. (2008),
Almedia and Kagan (2009) and Haghbin and Farjah (2009),
the concept of monitor observability is utilized to find
optimal placement of POMs in transmission systems.
However, this concept 1s mnot suitable for radial
distribution networks (Ibralum et af., 2010). Therefore,
there is a need to develop a new optimal PQM placement
method that is applicable for both transmission and
distribution systems.

A few optimization techniques have been used to
solve the optimal PQM placement problem in the last few
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vears. In Eldery et al. (2004), the PQM placement method
was developed by using the GAMS software as an integer
linear program. In Reis et af. (2008), the branch and
bound algorithm 15 applied by dividing the solution space
into smaller spaces to make it easier to solve. However, it
may give totally a wrong solution when there is a mistake
n selecting a branch m earlier stages. In other words, it
has a potential to be trapped in local mimma and this 1s
the main drawback of integer programming likes
branch and bound (Mohammadi-Tvatloo, 2009). In
Almedia and Kagan (2009), Haghbin and Farjah (2009) and
Ibralum et af. (2010), Genetic Algorithm (GA) 13 used for
solving the optimal POM placement problem. It seems that
GA is preferred for solving this optimization problem but
the disadvantage of GA 1s that it could not ensure better
fitness 1n a new generation due to competitive selection
and crossover operation which is biased toward
experienced solution (Borji, 2008). Thus, an alternative
optimization technique with better performance
such as Binary Particle Swarm Optimization (BPSO)
(Elbeltagi et al., 2005) and Binary Gravitational Search
Algorithm (BGSA) (Rashedi et al., 2010) are suggested to
be mmplemented.

The main amm of this study was to develop a new
algorithm for solving the optimal PQM placement problem
in power systems by applying the quantum behaviour to
enhance the conventional BGSA. The merging between
quantum computing and heuristic optimization techmque
is used in this work because of its capability to
avoid premature convergence and improve the efficiency
(Han and Kim, 2002, Vlachogianms and Lee, 2008,
Farzi, 2010; Jeong et al., 2010, Chou ef al., 2011). The
performance of the developed algorithm is then compared
to another quantum-inspired computing method, namely,
Quantum-inspired Binary Particle Swarm Optimization
(QBPSO). In order to show the improvement of
conventional method by using the quantum computing,
the BGSA and BPSO are also included in this comparison.

AN OVERVIEW OF BINARY GRAVITATIONAL
SEARCH ALGORITHM

Recently, heuristic optunization techmques are
evolving rapidly in optimizing problems because they are
found to be more robust and efficient in optimizing
multidimensional problems in various fields (Rabii et al.,
2011). The Bmary Gravitational Search Algorithm (BGSA)
15 one of the most recent probabilistic optimization
techniques which was introduced and developed by
Rashedi et al (2010). The conventional GSA was
originally designed to solve problems in contmuous
valued space (Rashedi et al, 2009). The search algorithm
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is based on the metaphor of gravitational interaction
between masses in the Newton theory. A jth bit of the ith
agent (x,) in a system is represented as a bit 0 or 1 where
a combination of bits gives the ith agent position. In this
algorithm, the GSA operators calculate agent's
acceleration (a;) based on gravitational force and its mass
1n each iteration using the following equations:

Gt = G, {1—%} (1
M, (t)=<M, (t
Bi- ol g o) @
()= 3 eeE() 3)
belbest ki
E(t
a(t)= M]i((t)) @
Where:
G, Initial gravity constant;
T Total number of iterations;
F Gravitational force action;
M Agent gravitational mass;
R, Hamming distance between 1th agent and kth
agent;
£ Small positive coefficient, 2™
T : Uniform random variable in interval [0,1]
Kbest :  Selection number of the best agent applying

force to system which decreases monotonously
in percentage from Kbestmax to Kbestmin along
the iteration

The next agent’s velocity (v;) 1s calculated based on
its current velocity and its acceleration as expressed in
Eq. 5. Then, a new agent’s position (x;) is updated using
a condition as shown in Eq. 6. However, the velocity 1s
limited in interval [-6,6] as to achieve a good convergence
rate.

(5)

V,J(t+1) = rxVu(t)+alJ(t)

_ m,ifr < ‘tanh(vlJ (t + 1))‘

1) (&)

le(t'*- .
i

i (t),otherwise

QUANTUM-INSPIRED BINARY GRAVITATIONAL
SEARCH ALGORITHM

Quantum computing: The first quantum inspired
computing method was mtroduced by Moore and
Nayaranan (1995). Tt is a numerical computational method
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that utilizes the principle of quantum mechanics. The
smallest umt for quantum computing which 1s known as
quantum bit (Q-bit) may be in the “1” state, in the “0”
state or in superposition of the two corresponding to
weighting factors of complex number (¢, ) (Han and Kim,
2002) as represented in (7). The |¢*> and |B in the
representation gives a probability that the Q-bit will be
m the “0” state and the “1” state, respectively. Thus,
the state probability can be normalized to unity as
B = 1:

fw)=alg) - B (7)

Similar to agent’s position m BGSA, all decision
variables (x;) can be represented by a string of Q-bits as
a single representation called Q-bit individual. Tn the
quantum computing, the Q-bit ndividual is updated using
a quantum gate ((Q-gate) which 1s a reversible gate and
can be represented as a unitary operator, U. Tt is either a
rotation gate, NOT gate, controlled NOT gate or the
Hadameard gate etc. (Hey, 1999) used to change the
probability of the Q-bit state so as to promise a reversible
of the formation. In this study, the rotation gate is
considered since 1t has been applied in many heuristic
search algorithms (Han and Kim, 2002; Vlachogiannis and
Lee, 2008; Jeong ef al., 2010, Chou et al., 2011). The
rotation gate 15 expressed as follows:

(8)

U(A0)-

|:COS(AB) —sin (AB):|

sin(AB) cos (AB)

BGSA with quantum computing: As refer to the
traditional BGSA, many random variables are used in the
calculation which causes the main idea to implement the
gravitation on the search algorithm will not give
significant effects. Therefore, the random variables in
Eq. 12 and 14 are removed as to reduce too much
dependence on randomise exploration process.
Furthermore, the small positive coefficient, € can be
neglected because it 1s not significant to apply in the
binary domain where the distance between two agents 1s
only exist in integer number. As a result, the agent’s
acceleration a; calculation in (1) to (4) can be summarized
as follows:

@)

a;(t)

[G(t)x
ke Kbest k#i

In the proposed QBGSA, a rotation angle (A0) 1s
utilized in order to implement the quantum computing in
this algorithm and the parameter will be used to update
the agent’s position, x; Therefore, the concept of
acceleration, a; updating procedure inthe BGSA should
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be modified as to obtain the rotation angle where the
gravitational mass 1s replaced to the magnitude of the
rotation angle (8). According to Eq. 9, the gravitational
force acting on the particular agent depends on other
masses, M, and distance between other agents to the
particular agent. These two elements are given by a
decision parameter, € in the proposed QBGSA. In this
study, the same varation operators as suggested by
Teong et al. (2010) are used which are called coordinate
rotation gate and dynamic magnitude rotation angle
approach. As a result, there is no pre-determined lockup
table and the rotation angle calculation 1s proposed as n
the following expression:

A8, (t) (10)

[0 {xy (1) - 5, (1)) ]

keEbest kgl

where, 0 1s the magmtude of rotation angle which
monotonously decreases from 6, to 8., along iteration
and can be obtained using the following conditions:

k 1, lfM(k)> M(i)andRikSr (11)
N 0, if elsewhere
le(: {)\ﬁk+l=iff(xk):f(xkesl) (]2)

7\.}‘, otherwise

where, T 18 a maximuim of different number of bits between
1th agent and kth agent obtained from the percentage of
total bits which is to be considered as effective force
acting on the ith agent. That means attraction force by a
far agent is very small and can be neglected. However, the
best fitness agent with the highest mass can give
effective force on the agent even its position 1s far to ith
agent and it will give twice more force than the other
forces when its position is near to the ith agent. On the
other hand, the lighter agent can move easily as compared
to heavier agent due to inertia mass action against the
motion (Rashedi et af., 2009). As for that reason, only the
heavier kth agent can give effective acceleration on ith
agent.

Then, the QBGSA operators update the Q-bit
individual string based on the obtained rotation angle
using the rotation gate as shown in Eq. 13. The agent’s
position (x,) is updated based on probability of |B[* stored
in the Q-bit individual using criteria as given in Eq. 14:

o (1)

o)

(t

oy (t+1)

13
By(t+1) (13)

J-utan -

] (14)

(1 +1)= {1, ifr < By (t+1)

0, otherwise



J. Applied Sci., 12 (9): 822-830, 2012

APPLICATION ON PQM PLACEMENT
PROBLEM

The monitor coverage concept: The momitor coverage 1s
the most mmportant entity in the determination of PQM
placement. It 13 used to evaluate the placement so as to
guarantee the observability of the whole power network.
The conventional monitoring coverage concept is called
the Monitor Reach Area (MRA) (Olguin et al., 2006). In
this study, the Topological Monitor Reach Area (TMRA)
is utilized to make it applicable for all systems including
distribution systems (Tbrahim et al, 2011). The TMRA
matrix 1s a combination of MRA matrix and topology (T)
matrix by using operator ‘AND” as shown in Eq. 15. The
T matrix 1s used to give more restriction on the monitor
coverage so as to fulfill the radial topology which usually
exists in the distribution system. The TMRA matrix
colummns represent bus number and its rows are correlated
to fault location for all different types of fault.

TMRAK) = MRAG,K)<T(j k) (15
POQM problem formulation: There are three common
elements required in the binary optimization technique,
namely, decision vectors, objective function and
optimization constramts. Thus, each element 1s formulated
and explained in order to obtain the optimal solution for
the POM placement.

Decision vector: To satisfy the solution process mn this
study, the Momtor Placement (MP) vector 1s mtroduced
to represent the binary decision vector (x;) in bits in the
optimization process. The bits of this vector indicate the
positions of monitors that are either needed or not in
power system network., The dimension of the vector
corresponds to the number of buses in the system. A
value 0 (zero) in the MP (n) indicates that no monitor is
needed to be mstalled at bus n whereas a value 1 (one)
indicates that a momtor should be mstalled at bus n.
Thus, the MP vector 1s described by the followmg
eXpression:

Lif PQMisrequired atbusn
= wn

- 0, otherwise

(16)

MP(n)

Objective function: The use of optimization tool is to
determine the minimum number of PQM with the best
placement while maintaining the observation capability of
any fault occurrences which may lead to voltage sag
events in power system. Thus, the objective function 1s
formulated to solve two objectives, namely, optimal
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number of required monitors and optimal locations to
install the momitors. The number of required monitors
(NRM) to be mimimized can easily be obtamed and
expressed as:

(17)

N'RM:ZN:MP(H)

n=1

To determine the best locations to install the
monitors, additional parameters are required to achieve
the goals. There are two indices, namely, Monitor
Overlapping Index (MOI) and Sag Severity Index (SSI) to
be used for evaluating the suggested PQM placement in
the optimization process (Tbrahim et al., 2011). The MOT
indicates the level of overlapping in the PQMs coverage
which 13 given by the suggested placement. Therefore,
the MOI value should be minimized to find the best PQM
placement. The MOI value can be calculated using the
following expression:

(18)

where, NFLT is the total number of fault locations
considering all types of faults.

Meanwhile, the SST index indicates a severity level of
a specific bus towards voltage sag, where any fault
occurrence causes a large drop in voltage magmtudes for
most of the buses in the system. Therefore, the highest
331 value among the same NRM should also be obtained
to find the best POM placement. In order to calculate SSI,
the Severity Level (SL) based on threshold (t) mn p.u.
should be derived first as follow:

ST = (19)

NTPB

where:

NSPB: Number of phases experiencing voltage sag with
magnitudes below t p.u.

NTPB: Total number of phases in the system

Then, the SSI value is obtamed by considering five
threshold levels; 0.1, 0.3, 0.5, 0.7 and 0.9 p.u. where the
lowest t value 1s assigned with the highest weighting
factor, k and vice versa as in (20). The SSI values are
stored in a matrix where its column correlated to bus
number and its row correlated to Fault type (F).

2k-1

o1 %) (20)
8sTF = T ;k # QL
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To combine the MOI and SSI indices, both of them
should have similar optimal criteria of either maximum or
minimum. In this case, the SSI matrix should be modified
to give a minimum criterion in optimization to male it
sinilar to the case of mimmization of MOL It 1s important
to note that a maximum value of SST element is equal to 1.
Thus, it can be obtained by using complementary matrix
of SSI. Then, a Negative Severity Sag Index (NSSI) 1s
introduced to evaluate the best placement of monitors in
the system. The NSSI can be obtained using Eq. 21. Asa
result, a lower N3SI value mdicates a better arrangement
of PQMs in the power system.

| (ONE - 88T} MP™ |
NEFT

NSSI = (21 )

where:

ONE: Matrix with all entries ‘1° where its dimension is the
same as the SSI matrix;

NFT: Number of fault types

All the above functions can be combined in single
objective function by using the summation method since
all the functions have similar optimal criteria. However, the
objective functions should be independent and should
not influence each other in finding the optimal solution.
The single multi-objective function to solve optimization
problems in this study is expressed in Eq. 22. The concept
15 based on weighted sum method that has been
commonly used to solve multi-objective problems
(Marler and Arora, 2010). However, it is not exactly similar
to weighted sum method since the relative weight of NRM
is automatically increases when the NSSI increases due to
more POM placements in the system so as to maintain the
selection priority.

f = (NRMxMOT)+NSSI (22)
System constraints: The optimization algorithm must run
while satisfying all the constraints that are used to find
optimal mumber of POQMSs for the system. As given in
Eq. 23, the multiplication of the TMRA matrix by the
transposed MP matrix gives the number of monitors that
can detect voltage sags due to a fault at a specific bus. If
one of the resulting matrix elements is 0 (zero) then it
means that no monitor is capable of detecting sag caused
by faults at a particular bus, whereas if the value 1s greater
than 1 (one), that means more than one monitor have
observed a fault at the same bus. For that reason, the
following restrictions must be fulfilled to make sure that
each fault is observed by at least one monitor:

S IMRA (ki) MP(i}21 Vi (23)

i=1
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Implementation of the QBGSA: The optimization explores
the optimal solution as defined in the objective function
through the bits manipulation of decision vector subject
to the optimization constraints in each generation. The
process is iterated for a fixed number of times or until a
convergence criterion is achieved. The following are the
steps of QBGSA algorithm as to obtain the optimal PQM
placement in power system:

Randomly initialize all entries of the MPs (agent’s
positions, x;) in the system within feasible
arrangement. Tnitialize the Q-bit individual values:

o o o

BB Ba

Q- bit = (24)

Evaluate performance of each MP vector using the
formulated objective function (f) as based on
equations m 17, 18, 21 and 22. Record all fitness
values for each agent, f(t). Then, update the best and
the worst fitness values using the following
equations:

best(t):igr{l?itz'}ﬁ(t) (25)

(26)

worst (t )= E"{‘},af}%}f; (t)

Update each agent’s mass using the following
equations:

B fl(t)— worst(t)
o (t) * best (t)f worst(t) (27)
m, (t]

_ 28
Sm, =9

M (t)

{t)

Update for ith agent the rotation angle, AG(t+1) as
given m (10) with respective conditions in (11) and
(12)

Obtain the new pair (ce(t+1),p(t+1)) of each Q-bit
individual, Q-bit,(t+1) as given in (13)

Update MP vector by bit updating, x,(t+1) using the
given criteria n (14)

Evaluate the new MP vector using the optimization
constraints as in Eq. 23. Then, reject the MP vector
which does not fulfill the constraints

Repeat step (v1) to (vi) until all agents take suitable
positions and the population size becomes the same
as the initial population size

Repeat step (1) to (vir) untl optimization
convergence criteria 1s achieved. In this study, the
convergence criterion 1s based on maximum iteration
number
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RESULTS AND DISCUSSION

To demonstrate the performance of the proposed
QBGSA optimization techmque in solving the optimal
POM placement problem, two test systems are used in
this case study, namely, the 69-bus distribution system
and the IEEE 118-bus transmission system. In this study,
bolted three-phase (LLL) faults, Double-line to Ground
(DLG) faults and Single-phase to Ground (SLG) faults
were simulated at each bus in the system using the
DIgSILENT software to obtain the FV matrix. The new
QBGSA is implemented and compared to the conventional
BGSA (Rashedi et al., 2010), QBPSO (Jeong ef al., 2010)
and BPSO (Kennedy and Eberhart, 1997) as to illustrate its
performance in solving the same problem.

All the optimization parameters are standardized
where population size and maximum population are set to
40 and 150, respectively. In the BPSO, two positive
coefficients are set to 2 (¢, = ¢, = 2) and inertia weight, w
monotonously decrease from 0.9 (w,,,,) to 0.4 (w,.). In the
BGSA, mitial gravity constant, G; 13 set to 100 and the
best applying force, Kbest monotonously decrease from
100% (Kbest, ) to 2.5% (Kbest_ ). In the QBPSO, the
magnitude of rotation angle, 8 monotonously decrease
from 0.05% (0,,) to 0.00Iw (6,,) and all initial Q-bit
individual (@ +jP,) is setas 1742+ /42 . In the QBGSA,
the Kbest is similar to BGSA whereas the magnitude of
rotation angle, 6 and initial Q-bit individual are similar as
in the QBPSO. The parameter T in QBGSA is set to 8% of
the total number of bits.

Case I: the 69-bus test system: The 69-bus test system is
a balanced radial distribution system that is fed by
external grid to feeder nominal voltage at 12.66kV. The

system consists of 69 buses interconnected by 73 lines
including 5 tie lines. The 69-bus test system data are
provided in Rugthaicharoencheep and Sirisumrannukul,
(2009).

Table 1 shows the worst, average, best and standard
deviation, o from the adopted algonithms’ performances in
terms of convergence rate and quality of optimal solution
after performing 25 runs at ¢ = 0.85 p.u for the 69-bus
distribution system. Figure 1 illustrates the convergence
characteristics of the algorithms in obtaining the best
optimal solution for the test system. Here, BPSO 1s the
fastest in convergence but the worst in term of optimal
solution as compared to the other algorithms. This shows
a premature convergence in BPSO. Beside this, BGSA
gives better optimal solution than BPSO but its
convergence rate 1s the worst. In tlis case, merged
quantum computing to BPSO and BGSA has shown a
significant improvement in escaping from the premature
convergence and to give much better optimal solution.
Although QBPSO provides better solution than BPSO, it
requires more iterations as to explore over a search space
for the solution. The QBGSA has obtained the best
optimal solution with the lowest standard deviation but its
convergence is relatively slow. However, the proposed
QBGSA  shows an overall improvement on the
convergence rate of the traditional BGSA. Hence, the best
optimal solution given by QBGSA is taken as the PQM
placement in this study. The PQM placement for this case
study is buses 1, 6, 29, 32, 36, 38, 48 and 57.

Case I1: the IEEE 118-bus test system: The IEEE 118-bus
test system is a balanced transmission system which
consists of two voltage levels which are 138 kV and 345
kV. There are 34 generating stations, 20 synchronous

R ——- B8PS0
2504€ BGSA
-.—- QBPSO
—— QBGSA
200 A
o
=
£ 150 -
A
T L T .
£ 100 - -
sod NS T .
0 T T 1
0 50 100 150

Iterration

Fig. 1: The convergence characteristics of BPSO, BGSA, QBPSO and QBGSA for 69-bus case study
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Fitness values

BPSO
BGSA
QBPSO
QBGSA

—_—_—— e e e — ——— —

Iterration

Fig. 2: The convergence characteristics of BPSO, BGSA, QBPSO and QBGSA for 118-bus case study

Table 1: Performance of BPSO, BGSA, QBPSO and QBGSA to solve optimal POM placement in 69-bus system for e at 0.85 p.u.

Quality (Fitness) Convergence (Iteration)
Ttem Worst Average Best a Worst Average Best a
BPSO 62.32 47.65 35.89 6.20 55 25.80 11 11.75
BGSA 35.53 23.95 19.85 3.89 149 143.84 137 3.99
QBPSO 23.32 20.44 18.37 1.57 145 84.32 30 40.46
OBGSA 18.28 19.94 18.28 0.79 150 111.16 48 30.96

Table 2: Performance of BPSO, BGRA, QBPSO and QBGSA to solve optimal POM placement in 118-bus system for ¢ at 0.85 p.u.

Ttem Quality (Fitness) Convergence (Tteration)

Worst Average Best o Worst Average Best o
BPSO 181.96 149.71 108.66 16.72 92 34.20 13 2071
BGSA 13540 101.80 77.31 16.91 148 135.44 114 9.12
QBPSO 45.70 36.65 30.06 527 149 119.72 75 2244
QOBGSA 39.92 30.58 26.22 3.34 150 128.40 78 21.50

condensers and 9 transformers. The test system consists
of 118 buses which are interconnected by 177 lines. The
TEEE 118-bus test system data are provided in Christie
(1993).

Table 2 shows the worst, average, best and standard
deviation, 0 from the adopted algonthms’ performances in
terms of convergence rate and quality of optimal solution
after performing 25 runs at « = 0.85 p.u. for the 118-bus
transmission system. Figure 2 illustrates the convergence
characteristics of the algorithms in obtaining the best
optimal solution for the test system. As can be seen in the
table, BPSO is the fastest in convergence. However, it
vields highly unacceptable suboptimal solutions as
compared to the other three methods which show a
premature convergence as m the 69-bus case. On the
other hand, BGSA gives better optimal solution than
BPSO but the worst in terms of convergence rate. Again,
the merged quantum computing to BPSO and BGSA has
proven that they are able to escape from the premature
convergence as to give much better optimal solution.
Although the QBPSO and QBGSA provide better solution
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than BPSO, they require more iteration. In comparison
between QBGSA and QBPSO, the QBGSA has obtained
a better optimal solution with the lowest standard
deviation and its convergence 1s comparable to the
QBPSO. Hence, the PQM placement for this case study 1s
buses 6,22, 43, 56,62, 71, 87, 93, 98 and 108 which 1s taken
from QBGSA optimal solution since 1t 18 the best solution.

CONCLUSIONS

This study presented a novel QBGSA and a
comparative performance of QBGSA, QBPSO, BGSA and
BPSO in solving the multi-objective optimization problems
for optimal PQM placement in a distribution test system.
The optimization problem formulation 1s mamly based on
the wuse of the TMRA and the two placement
evaluation mdices, namely, the SSI and the MOIL The
optimization techniques have been tested on the 69-bus
distribution system and the IEEE 118-bus transmission
system for determining the best optimal PQM placements.
The comparative results reveal that the proposed
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OBGSA is the most effective and precise among the
aforementioned optimization techniques.
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