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Learning Logic Programming in Radial Basis Function Network via Genetic Algorithm
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Abstract: Neural-symbolic systems are based on both logic programming and artificial neural networks. A
neural network 1s a black box that clearly learns the mternal relations of unknown systems. Radial Basis
Function Neural Network (RBFNN) 1s a commonly-used type of feed forward neural network. Algorithms are
used for learning the RBFNN in an adaptive procedure. Learning RBFNN indicate how the parameters (the
output weights, the centers and the widths) should be incrementally adapted to improve a predefined
performance measure, in this work, we embedded higher order logic programming in RBFNN. k-means cluster
algorithm and Genetic Algorithm (GA) used in for training RBFNN.
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INTRODUCTION

Neural-symbolic systems are Artificial Intelligence
(AI) system which 1s a realization of symbolic processes
within artificial neural networks. It is great to combine the
robust artificial neural networks (Khatib and Alsadi, 2011,
Ustun, 2007) and Logic programs. Designing an integrated
system using Radial Basis Function Neural Network
(RBFNN), can be benefited in utilizing the advantages of
artificial neural networks and Logic programs. There have
been numerous attempts for doing logic programming in
artificial neural networks (Bader and Hitzler, 2004,
Hitzler ef al., 2004; Holldobler and Kalinke, 1994; Seda,
2006) which used multilayer neural network.

The first step in the integration logic programming
and artificial neural networks is by encoding logic
programming within artificial neural networks. We
presented a method of encoding higher order logic
programming in Radial Basis Function neural network in
by Hamadneh ef al. (2012) (encoding method or EN
method). It 13 obvious that RBFNN has been subjected to
extensive research over recent years and have
successfully been employed in various problem domains
(Lowe, 1989; Moody and Darken, 1989). The idea of the
RBFNN 1s to allocate each RBF neuron to respond to each
of sub-spaces of a pattern class, formed by the clusters of
training samples (Noman et al., 2009, Taghi et al., 2004,
Xiaobin, 2009). Pursuant to that, learning at the hidden
layer, 1s commonly configured as the problem of finding
these clusters and their parameters by certain means of
functional optimization. The name, RBFNN, comes from
the fact that the radial basis functions which use m the

hidden layer are radially symmetric. RBFNNs are very
popular for function approximation, curve fitting, time
series prediction and control and classification problems.
The radial basis function network 1s different from other
neural networks, possessing several distinctive features.
Because of their universal approximation ability, more
compact topology and  faster learning speed,
RBFNNs have attracted much attention and they have
been widely applied in many science and engneering
fields (Kang and Tin, 2010, Lu and Ye, 2007;
Zayandehroodi et al., 2010). We also use the preference
based genetic algorithm (Choon and Tilahun, 2011;
Hasangholipour and Khodayar, 2010; Sinha and Chande,
2010) in order to adjust the output weights.

The objective of the study was to embedded higher
order logic programming in RBFNN using k-means cluster
algorithm and genetic algorithm.

PRELIMINARIES

Radial basis function neural network: RBFNN typically
has three layers (Lowe, 1989; Moody and Darken, 1989,
Rojas, 1996), namely, an input layer, a hidden layer with a
non-lnear RBF activation function, such as Gaussian
function (Dhubkarya et al., 2010) and a linear output layer
as shown in Fig. 1.Ttis a special class of multilayer
feed-forward network (Zihe et al., 2011). The hidden layer
neurons receive the mput mformation, followed by certain
decomposition, extraction and transformation steps to
generate the output information. The following equation
is the Gauss-radial basis function that we use in RBFNN
{(Dhubkarya ef al., 2010):
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Fig. 1: Structure of a RBFNN
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where, ¢; is the radial basis function in hidden neuron i.
x€R is the input value. ¢, and ¢° are the center and the
width of the hidden neuron 1, respectively.

Tt is worth mentioning that Eq. 1 is the radial basis
function used in the hidden neurons in RBFNN without
using constant input weights that which linked between
mput neurons and hidden neurons.

Each output unit implements a linear combination of
this Radial Basis Function. From the point of view of
function approximation, the hidden umits provide a set of
function that constitutes a basis set for representing input
patterns in the space spanned by the hidden units.

A training process is used to determine the
welights, the centers and the width. The weights are
computed by applying an optimization algorithm for
minimizing a suitable error function E. There are three
different ways for training (Dhubkarya er al, 2010;
Lampariello and Sciandrone, 2001) which are as follows:

No-training: In this simplest case, all the parameters
including the centers, the widths and the output
welights, are calculated and fixed (ne training is
required). This paradigm does not have any practical
value, because the number of the centers should be

equal to the number of training samples
(Dhubkarya et af., 2010)
+  Half-training: In this case the lidden layer

parameters (the centers and the widths) are
calculated and fixed and only output layer weights
are adjusted through

Full-training: This paradigm requires the traimng of
all parameters including the centers, the widths and
the output weights

841

Logic programming: A logic program (Lloyd, 1984) is a
set of axioms, clauses, or rules which in tum consist of
literals, 1.e., atoms and negated atoms only (negation 1s
denoted by —). Note that, logic programming 1s activated
by an initial goal statement. Tt is worth mentioning that
Logical knowledge representation is symbolic. A higher
order logic program (Lloyd, 1984) consists of a set of logic
clauses each of the forms:

(2)

AvAv.vA B AB, ALB,

The clause (2) can be simphified to the following form:

3)

n m
Vigdy AL B;

where, the arrow may be read “if”. The symbols Vv and A
read “or and” , respectively. A,viand B/¥i are literals.
Clauses can be either represented in Disjunctive
Normal Form (DNF) or Conjunctive Normal Form (CNF)
which 1s widely been used to represent clauses.
Conjunction Normal Form (CNF) is a method of
standardizing and normalizing logic programming. A logic
programming P is CNF if and only if P=E"E"E where F,
i=1,2,3 is a clause. Disjunction Normal Form (DNF) is a
method of standardizing and normalizing each clause, for
example, clause (2) can be written using DNF as follows:

4

Vigdy Vi B

A clause which contains one atom in the head and

literals in their body is called horn clause. Therefore, the
general form of horn clauses 1s:

(3

m
Ay By

We allow m = 0, by an abuse of notation; in this case,
the clause is called a unit clause or a fact clause.

EMBEDDING THE CLAUSES IN RADIATL BASIS
FUNCTION NEURAL NETWORK

The primary end in this work is embedding higher
order logic programming in RBFNN through ELPN method
and genetic algorithm. Furthermore, we show, firstly, how
to embed a clause n RBFNN through ELPN method, by
using binary mput neurons i RBFNN, where O refers to
false and 1 refers to be true.

Consider that there are clauses in the form:

A vA, v vA B A-By AL A-B, AB | AB, AL ABy (6)

where, k, x, NeN.
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Table 1: The training set of the clause (10)
Input values

Output target values
1

Lo - ) W

—
[ S,

The clause (1) can be written using CNF as follows:
AvA, v.vA vB vByv..vB, vaB,,, v-B, 5 v v By (7)

The RBFNN which represents any clause consists of
one nput neuron and also one output neuron. As a rule,
we will embed the clause (6) in RBFNN. Firstly, we convert
the clause (6) to CNF form which become the clause (7).
Accordingly, the input values in RBFNN be in the form:

A +A 4+ +A +B +B+..+B, -B,_, -

L : N
Biy—mBy = (EAi + ZJBx)_ 2 B;
= =

i=xH

&)

The input data in Eq 8 are given by
Khatib and Alsadi (2011) Ustun (2007). Therefore, the
output data of Eq. 8 be the following closed interval:

me[K+ X,~(N-X)],meZ 9)

We summarize the steps of embedding the clause (6)
in RBFNN using EN method by the following steps:

*  Step 1: Convert the clause (6) mto CNF form

+  Step 2: We use one input neuron i RBFNN which
represents the clause (6)

¢ Step 3: The number of hidden neurons is dependent
on the method which is used in learning RBFNN.
Moreover, half-training paradigm or full-training
paradigm will reduce the number of hidden neurons

¢ Step 4: Eq.1 is the radial basis function which use in
hidden neurons in RBFNN

*  Step 5: The output data form of the mnput neuron in
RBFNN 1s represents m Eq. 8. So the output data of
the mput neurons were represented by the closed
interval (9)

We will discuss the clause (10) (Table 1) as a simple
example of embedding the clauses in RBFNN:

ALALACTBLB, 10

We summarize the steps of embedding the clause (10)
in RBFNN as follows:

s+ Step 1: Convert the clause (10) into CNF form.
Therefore, the clause (10) be in the following form:

A v A, v A, VB, VB, (11)

»  Step 2: The RBFNN which represents the clause (10)
consists of one input neuron and one output neuron

¢ Step 3: The number of hidden neurons is dependent
on the method which uses in learming RBFNN.
Moreover, half-traiming paradigm or full-traming
paradigm will reduce the number of hidden neurons.
If we use the no-training paradigm to training RBFNN
which represents the clause (10), we need to use six
hidden neurens. Since, the input value be in the
following form:

x = (A+AAFAAB)-B, (12)

where, x is the output value of the input neuron

The digital values of the literals in Eq. 12 are
{0,1}. Accordingly, the input value (x) in RBFNN
which represents the clause (10), by using Eq. 12, 1s
illustrated in the set (13).

x€{-1,0,1,2,3.4% (13)

s Step 4: Equation 1 is the radial basis function which
use in hidden neurons in RBFNN which represents
the clause (10)

EMBEDDING LOGIC PROGRAMMING IN RADIAL
BASIS FUNCTION NETWORK

The following 15 a logic programming which will serve
as an example for embedding logic programming in
RBFNN:

Cena
DB~ (14)
A«BCD

The logic programming (14) consists of three clauses,
so there are three output neurcns and three input neuron.
The number of the hidden neurons is dependent on the
method used in learning RBFNN.

Note that, the ways we have chosen for training the
logic programming (6) are no-training paradigm, as shown
inFig. 2. The logic programming (14) needs to be written
in the following form which is necessary for selecting the
input values:

CA(Dv—=B)a(Av—Bv—Cyv-D) (15)
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Fig. 2: Structure of RBFNN which represents the logic
programming (14)

The output date form for each mput neuron in
RBFNN which represents the logic programming (15) 1s
described n Fig. 2. Note that, the number of the ludden
neurons in Fig. 1 is according to no-training method
(Dhubkarya et al., 2010, Lampariello and Sciandrone,
2001).

TRAINING LOGIC PROGRAMMING IN RADIAL
BASIS FUNCTION NETWORK

Training methods can be applied to the RBFNN
parameters in order to improve the performance of the
network. Training process (Asadollahi-Baboli, 2011,
Lampariello and Sciandrone, 2001; Solaimani, 2009,
Taghi et al., 2004) 13 used to determme the output
weights, the centers and the widths. The training set for
clause (11) is shown in Table 2. The RBFNN parameters
can be determined by mimimizing an error function that
measures the degree of success. Noteworthy, as we
mentioned earlier in section 2.1, there are three different
paradigms for RBFNN (tramning RBFNN) which are:
No-training, Half-training and Full-training.

The two phases of learning (Full-tramning) with
RBFNN are supervised and unsupervised learning
(Noman et al., 2009; Rojas, 1996). In this work we will use
the full traming paradigm to tram RBFNN using k-means
cluster algorithm and genetic algorithm.

k-means cluster algorithm: /f-means algorithm was
developed by Idn ef al. (2010), Looney (1997) and
Zhang and L1 (1996), 1s a popular clustering techmque
which is used in numerous applications. It is a multi-pass
clustering algorithm. The k-means algorithm partitions a
collection of N vectors mto ¢ clusters Z, 1= 1,..,c. The aim
15 to find cluster centers by mimmizing a distance
function:

d(Xk>C1) = |Xk_cl‘ (1 6)
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where, ¢, is the center of cluster z; d(x,,c,) is the distance
between ith center ¢; and kth data point x,.

After calculating the centers by using the k-means
algorithm, we calculate the width for each hidden neuron
with the variance o°. In the real numbers R, the variance
o’ for M elements be in the form:

(17)

1

2

g =— E [x—¢,
I’Ik xET

where, 0, 1s the width of neuron k, M, 1s the number of
elements in the cluster Z,.

The outline of the A-means algorithm (Negnevitsky,
2005; Zhang and L1, 1996) can be stated as follows:

Defme the number of the desired clusters Z, where
each cluster is represented by a hidden neuron. So,
the number of the clusters equal to the number of
hidden neurons

Imitialize the centers ¢, 1 = 1,..,c. This 1s typically
achieved by randomly selecting ¢ points from among
all of the data points

Compute the distance between x; and ¢, by using
Eq. 16

Assign each x; to the closed cluster 7,

Upon averaging each cluster by Eq. 18, we obtain the
new optimal centers:

(18)

where, ¢ 15 the center of the cluster Z; which has M
elements

Compute the objective function d given in Eq. 16.
Stop if the clusters do not change

If the elements m each cluster doesn’t change
terminate otherwise go to step 4

We will now caleulate the centers of RBFNN which
represent the clause (10) by using k-means algorithm.
Then calculate the widths, as shown in Fig. 3. We have
the input values {-1,0,1,2,3,4} with using three hidden
neurons i RBFNN. Suppose that the mitial values of the
centers are 1, 3 and 4. Accordingly, we follow the steps
which represent the k-means algorithm to determine the
centers fixedas: ¢, =0,¢c,=25and ¢, = 4.

By using Eq. 17, to calculate the widths, we get:

1 2
1+0+1)=2=,
3! )73

2
Gy

5, :%(0.5 +0.3) :%
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Table 2: Training set of the clause (10) in RBFNN with the radial basis function values using Eq. 1

i Input values (x) OQutput target value, (v)) by () b4 (X) by (X))

1 -1 0 0.184974 1.04482e-008 1.3887%¢-011
2 0 1 0.829205 8.47387e-005 1.12535e-007
3 1 1 0.829025 0.0342066 0.00012341

4 2 1 0.184974 0.687263 0.0183156

5 3 1 0.0092086 0.687263 0.367879

6 4 1 0.000102287 0.0342066 1

Fig. 3: RBFNN which represents the clause (10)

We have one element in third clause.

Suppose o:=035  Accordingly, the radial basis
function values that we get by using Eq. 1 are found in
Table 2.

Genetic algorithm: Genetic algorithm is one of the well
known and widely used metaheuristic solution algorithms
for optimi zation problems (Hasangholipour and Khodayar,
2010; Ustury, 2007). It has been used to solve many real
problems (Wang and Wan, 2011). The algorithm imitates
Darwin’s theory of natural selection and survival of the
fittest (Negnevitsky, 2005). In the algorithm an initial set
of population will be generated encoded using 0"s and 1°s
as a chromosome. Fitness for each solution member will
be assigned depending on the objective function. For a
maximization problem the fitness should be directly
proportional to the functional value. In the algorithm there
are two operators namely crossover operator and
mutation operator.

The crossover operator is an operator which takes
two solution members and produces two children by
swapping some part of the chromosomes of the parents
randomly. However, mutation operator is an operator
which changes a randomly chosen chromosome from O to
1 or 1 to 0. The fittest member from both parent set and
children will be selected for the next iteration. This
process continues until termination a criterion fulfils.

The termination criteria could me maximum mumber of
iterations or a specified small error (Negnevitsky, 2005).

The algorithm can be summarized as follows:

¢ Generate initial solutions and assign fitness for each
solution member

¢+  Choose parents for reproduction and mutation by
giving high probability to the fittest

s Perform reproduction and mutation

»  Select the fittest from parent and children and
construct a new solution set

¢ Iftermination criteria fulfils stop else go to step 2

In the case of multiple objective functions, a dynamic
weighted function can be generated as an aggregation
objective function depending on the given preference or
order of objective functions. Once the preference of the
decision maker 1s known for each objective function, then
that can be used as a weight for the objective functions in
forming aggregated new objective function. The weight
can be dynamic (Choon and Tilahun, 2011). Tn our case we
set equal weight for each objective functions.

Applying GA to adjust the weights: We use a genetic
algorithm by having a minimization multi-objective
optimization problem with six objective functions to
minimize the error of RBFNN which represent the clause
(10). We set the upper bound and lower bound for the
weights to be 2 and -2, respectively:

min (€.£,.6.£,.£.5)

where:
(W0, = | w0y G5, ) a0, () +wnt, e ) -y, | (D)

for 1€4{1,2..,6} which represents the absolute error
between actual values and target values v;.

The weight for each objective function is taken to be
the same and a crisp number. Hence, the aggregated
objective functior, ¥, used to measure the fitness mn the
algorithm is given by:

(20)

5
Flw,, w,, w;)= Zf; (W, W, Ws)
=

The probability of reproduction and mutation is taken
to be 0.85 and 0.25, respectively. The total number of
iteration 1s set 30 with number of mitial population 40.

The best result after mnning the code is tabulated as
follows:
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Table 3: Values after mnning the genetic algorithm to find the weights

3

Input values (x;) Qutput target values, (v, by (%) ha(x) () Cutput values, g’w“b’ (x)
-1 0 0.184974 1.04482e-008 1.38879%-011 0.2168
0 1 0.820025 8.47387e-005 1.12535e-007 0.9718
1 1 0.820025 0.0342066 0.00012341 1.0034
2 1 0.184974 0.687263 0.018315¢6 0.8678
3 1 0.0092086 0.687263 0.367879 1.0001
4 1 0.000102287 0.0342066 1 0.9993
61 Best performance
--------- Average performance
54
=
0)
o
E
g 37
=
°
£ 27
=
wv
N\ ™
O T T T T 1
0 5 10 20 25 30
No. of itration
Fig. 4: The average and best performance of the algorithm in terms of sum of absolute errors
0.7 1 —— Obj. function 1
—&— Obyj. function 2
—— Obyj. function 3
064 === Obj. function 4
—&— Obj. function 5
2 —&—Obj. function 6
2
2
&
o
Z
2
2
o
Q
S
s
E
s
No. of iteration
Fig. 5: The value of the objective functions (absolute errors) with the iteration of the algorithm
¢ The output weights of w,, 1 =1,23 are 1.1717, 0.9215 CONCLUSION

and 0.9676, respectively, with sum of absolute error

of 0.3814

¢ The performance of the algorithm in terms of the best
and average performance is given below, in Fig. 4
and 5. Note that, the actual output values were

illustrated in Table 3
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This study is an extension of Hamadneh et al. (2012)

which use embedding lugher order logic programming in
RBFNN. Similarly, as n study of Hamadneh ef af. (2012),
we embedded higher order logic programming in RBFNN
by using EN method. We trained the RBFNN for Table 1,
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by using Genetic algorithm with k-means algorithm to
improve the performance of the network. We used the
k-means algorithm to find the centers and the widths of
RBFNN and Genetic algorithm is used to adjust the output
weighs. Accordingly, the sum of absolute error is 0.3814.
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