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Abstract: This study has presented some common fixed point results for classes of contractions in partially
ordered metric spaces. The results has extended and improved the results of several other well-known studies.

It also provide the examples to illustrate the results.
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INTRODUCTION

Fixed pomt theory 1s an interesting field of
mathematics. One of its fundamental theorems is Banach's
contraction principle (Banach, 1922). This famous result
15 concerming with the existence and umqueness of fixed
point for contraction mappings, defined on a complete
metric space. Alber and Guerre-Delabriere (1997)
introduced the concept of weak contraction and after this
more attention was devoted to this branch of
mathematics. In this direction, development of fixed pomt
theory in partially ordered metric spaces is considerable.

For a swvey of fixed point theory, its applications
and related results in partially ordered metric spaces we
refer to Ran and Reurings (2004), Radenovic and
Kadelburg (2010), Nieto and Lopez (2005), Nashine and
Samet (2011), Harjami et al. (2011), Abbas etal. (2011),
Zhang and Song (2009), Moradi et al. (2011), Doric (2009)
and Mujahid and Dragan (2010).

PRELIMINARIES

The concept of C-contraction was introduced by
Chatterjea (1972) as follows.

Definition 1: Tet (3, d) be a metric space. A mapping T:
X-X is said to be a C-contraction if there exists ¢ €(0, 1/2)
such that for all x, yeX the following inequality holds:

d(Ta,Ty) < o d(x, Ty )+ d(y, Tx)).

Chatterjea (1972) proved that if X is complete, then
every C-contraction on X has a unique fixed point.

Choudhury (2009) generalized the concept of C-
contraction to weak C-contraction as follows.

Definition 2 : Let (X, d) be a metric space. A mapping
T: X-3{is said to be weakly C-contractive (or a weak C-
contraction) if for all x, yeX:

d(Tx,Ty) < % (d(x,Ty)+d(y, Tx)) — (d{x,Ty),d(y, Tx))

where, : (0, «)*~(0, =} is a continuous function such that
@¢(x y)=0ifand only if x=y=0.

Harjani et al. (2011) have presented some fixed point
results for weakly C-contractive mappings in a complete
metric space endowed with a partially order. One of this
results 13 the following.

Theorem 1: Let (X, <) be a partially ordered set and
suppose that there exists a metric d in X such that (X, d)
1s a complete metric space. Let T: X~X be a continuous
and nondecreasing mapping such that:

d(Tx,Ty)< %(d(x,Ty) +d{y, Tx)) - @{d(x, Ty)d(y,Tx}).

for xzy, where, @: (0, «Y=(0, «) is a continuous function
such that @ (x, ¥) = 0 if end only if x = y = 0. If there exists
xeX with x,<Tx, then T has a fixed point.

Moreover, they have proved that the above theorem
1s still valid for T not necessarily continuous, assuming
the following hypothesis:

If (x,) 1 a nondecreasing sequence i X such that:

X, — X, then x, < x for all n. (1)

The partially ordered metric spaces with the above
property was called regular (Nashine and Samet, 2011).
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The notion of an altering distance function was
introduced by Khan et al. (1984) as follows.

Definition 3: The function W: [0, «)=[0, =) 15 called an
altering distance function, if the following properties are
satisfied.

* WV is continuous and nondecreasing.

+ V(t)y=0ifandonly ift=0.
Let T be a self-map on a metric space X.
Beiranvand et al. (2009) mtroduced the concept of T-
contraction mapping as a generalization of the concept of
Banach contraction mapping.

A mapping 1 X-X 1s said to be a T-contraction, if
there exists a number k in [0,1) such that:

(T, Tfy) < kd(Tx,Ty)

forall x, y in X.
If T =1 (the identity mapping on X), then the above
notion reduces to the Banach contraction mapping.

Definition 4: T.et (3, d) be a metric space. A mapping f:
X-X 13 said to be sequentially convergent
(subsequentially convergent) if for a sequence {x,} m X
for which {fx,} is convergent, {x,} also is convergent ({x,}
has a convergent subsequence).

Definition 5: Choudhury and Kundu (2012): Suppose
(3, <) is a partially ordered set and T, g X-X are two
mappings of X to itself. T is said to be g-non-decreasing
if for all x, yeX:

gx<gy =>Tx <Ty.

Let W denote the class of all altering distance
functionsW: [0, )~[0, <) and @ be the collection of all
continucus functions @: [0, «)-=[0, ) such that
@(x,y)=0ifand only ifx =y = 0.

Recently, using the concept of an altering distance
function, Shatanawi (2011) has presented some fixed point
theorems for a nonlnear weakly C-contraction type
mapping in metric and ordered metric spaces. His results
generalized the results of Harjani e# al. (2011).

The following theorems are due to Shatanawi (2011).

Theorem 2: Let (X, <, d) be an ordered complete metric

space. Let f X-X be a continuous non-decreasing
mapping. Suppose that for comparable x, y, we have:

P(difx.fy)) < ‘I’%(d(xsfyH d(y,fx)) - {d(x.fy).d(y. &)
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where, ¥ is an altering distance function and ¢ € @. If
there exists x,€X such that x,<fx; then f has a fixed point.

Theorem 3: Suppose that X, f, ¥ and @ are as in theorem
1.5 except the contimuty of f. Suppose that for a
nondecreasing sequence {x,} in X with x,~x € X, we have
x,<x for all neN. If there exists x,€X such that x <fx,, then
f has a fixed pomnt.

Let us note that the beautiful theory of fixed point is
used frequently in other branches of mathematics and
engineering science (Shakeri, 2009).

The aim of this study is to obtain some common fixed
points for weakly C-contractive mappings in a complete
and partially ordered complete metric space. Present
results extend and generalize the results of Shatanawi
(2011), Harjani et al. (2011), Choudhury (200%) and
Chatterjea (1972).

MAIN RESULTS

The method of proof has been found by Harjani et al.
(2011) and Shatanawi (2011).

Theorem 4: Tet (X, <, d) be a regular partially ordered
complete metric space and T: X-X be an injective,
contimious subsequentially convergent mapping. Let
f, g: X3 be such that f{(X)cg(X), f is g-non-decreasing,
g(X) is closed and:

W(d(TEx, THy)) < w(%(d(rgxmfy) + d(Tgy,Tfx))) — G(d(Tgx, Thy), d(Tgy, Tx))

(2

for every pair (x, y)eXxX such that gx <gy, where, ¥ is an
altering distance function and ¢ € @ If there
exists x,eX such that gx,<fx,, then f and g have a
coincidence pomnt in X, that 1s, there exists v € X such that
fv =gv.

Proof: Let x,€X be such that gx,<fx,. Sice f{X)cg(X), we
can define x,€X such that gx ,= fx, then gx fx ;= gx,
Since, {15 g-non decreasing, we have fx,<fx,. In this way,
we can construct the sequence vy, as:

v, =fx, =gx,,
for all nz 0 for which:

gxp < fxp =gx) <fx, =gx, < -=fx,, =gx, <fx =gx <

Note that, if foralln= 0, 1, ..., we define d,=d
(¥, ¥oer) and d, = O for some n=0, then y, = y,.,, that
is, fx, = gx,.,, = X, = gX,.» 50 g and f have a coincidence
point. So, we assume that d, # 0 for eachn



J. Applied Sci., 12 (9): 848-855, 2012

We complete the proof in three steps.
Step 1: We have to prove that:

limd(Ty,,,, Ty, )= 0.
n—es

Using Hq. 2 (which is possible since gx,,, <gx, ), we
obtain that:

Y(d(Ty ., Ty, B =w{d(Tfx ,,, Tfx, )

< ur(% (d{Tex, Ttk )+ d(Tgx, ., Tfx . )))
—o(d({Tgx,, . Tk, ).d(Tgx, Tix,, )

W (T, T3) T3, 0 T,
—o(d(Ty,, Ty, Ld(Ty, ,, Ty, ))

1
£ M(E d(Ty, . Ty, )}

D

SV (T3, 0 T5,) + Ty, T
Hence, monotonicity of ¥ yields that:
3

ATy, Ty, ) < d(Ty, . Ty, )

Tt follows that the sequence d(Ty.., Ty, is a
monotone decreasing sequence of non-negative real
numbers and consequently there exists r>0 such that:

limd(Ty,,,Ty,) =r.
n—yes
From (I), we have:

1
d(Ty,., Ty, ) = Ed(TYn—l’TYn-H)

1
< E(d(Tyn,pTyn) +d(Ty,, Ty, )
If n=<c, we have:
1
r<lim—d(Ty, . Ty, ) <r.
1y 2

Hence:
limd(Ty, , Ty, ,)=2r.
We have proved in (I) that:

1
VAT, Ty, ) < WS ATy, Ty, )~ 9(0.d(Ty, ;. Ty, . )

1
=y (5 ATy, . T¥

Now, if n-o and since ¥ and @ are continuous, we
can obtain:

850

W< () - @020 < y(r)
Consequently, ¢ (0, 2r) = 0. This guarantees that:

= lmd(y,., ¥, = 0.
n—es

Step 2: We show that {Ty,} is a Cauchy sequence in 3.
If not, then there exists >0 for which we can find

subsequences {Ty,,} and {Ty,} of {Ty,} such that

n(lkprmik)=k and d(Ty.u. Ty.,)=£, where n(k) is the

smallest index with this property, i.e.:

(4)

d(Tym(k) ST¥ w0 y=e
From triangle inequality:

£< d(TYm(k),TYn(k)) < d(TYm(k) =Tyn(k)-1) + dCryn(k)—l =Tyn(k))
<E+ d(TYn(k)-l ’TYn(k))'

Ifk-ee, since lim,_..d(Ty,, Ty,.) = 0, we can conclude

that;
TS g T ) = . (5
Moreover, we have:
(T s T o) =~ TS 1, T ME ATy 1 T o) (6)
and
(T s T sy ) = AT 0 T E ATy 1 Ty ) ()

Since lim, . d(Ty,, Ty,.,) = Oand Eq. 6 and 7 are hold,
we get:

(8)

1imd(Tym(k)71 T )= “IHd(Tyn(kH ST ==
ks e

Again, we know that the elements gx_,, and gx,,, are
comparable (g4, 2%, as nik)>mik)). Putting x = x,,
and y = x4, in Eq. 2, for all k>0, we have:

YACTY 3, T 0 ) = W (AT, Thx 0 0)
1
< W(E(d(Tan(k) =fom(k) }+d{Tex m(k):Tan(k) D)

—m(d(TgX“(k) ,fom(k)),d(Tgx Tan(k)))

1k ?
1
= V(E(d(Tyn(k)-l ST e )+ d(Tym(k)-pTYn(k) ik

*(P(d(Tyn(k)-1 T ) d(TYm(k)-l ST )

If k-, from Eq. 4, 8 and the continuity of ¥ and ¢,
we have:
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Y(E) < yiE)- glE,2).

Hence, we have @ (g, £) = 0 and therefore, £ = 0 which
is a contradiction and it follows that {Ty,} is a Cauchy
sequence in X.

Step 3: We show that f and g have a coincidence point.
Since (X, d) is complete and {Ty,} is Cauchy, there
exists z € X such that:

=1imTfx, =limTgx, =z
n—jea n—e

igqquy“

As T is subsequentially convergent, so we have
limfx, =v for some uin X where, {fxin is a subsequence of
ifx,}. Simce, T 1s continuous, !Lg}ﬁi“l =Tu  which by
uniqueness of limit, implies that Tu = z. Since, g(X) 1s
closed and {yn}cg(X), we have ueg(X) and hence, there
exists veX such that u = gv.

Now, we prove that v is a coincidence point of f
and g.

We know that gxn, is a non-decreasing sequence in X
such that gxn-u = gv. Thus, from regularity of X, gxn. So,
forallI e N, from (2) we have:

U(d(TfV,TfX"i NES u(é(d(Tgv,fo"i )+ d(TgXnl JTH)))

- m(d(TgV,Tanl),d(Tan],va))

= VT Ty, )+ &(Ty, L TE)

- q)(d(Tu,Ty“i ),d(Ty“]__1 Tfv)).
If in the above mequality 1~<=, we have:

y(d(Tfv,z)) < w(% (d(z,z) +d(z,Ttv))) — o(d(z,z),d(z, TH)).

and hence:

9(0,d(z, THv)) < w(%d(z,va))— w(d(Tfv,z)) < 0.

and therefore, d(z, Tfv) = 0. So, Tifv Tu.
Consequently, fv = u = gv. That 15, g and f have a
coincidence pomt.

Zz

Theorem 5: Adding the following conditions to the
hypotheses of theorem 4, we obtain the existence of the
common fixed point of f and g.

(i) gx<ggx, ¥xeX.
(ii) g and f be weakly compatible.
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Moreover, f and g has a unique common fixed point
provided that the common fixed pomts of f and g are
comparable.

Proof: We know that gxn = yn,~u = gv and by our
assurmptions:

gxm5u=gviggv=gu.
so gxg<gu and from Eq. 2 we can have:

w{d(Tfu ,TfX111 n< u(é (d(Tgu,Tanl) + (:I(Tg:»i111 ,THu)))

- O{d(Tgu Tfx, )d(Tex, Tfu))

=V (A(Teu.Ty, ) + Ty, TE))

- 9(d(Tgu. Ty, ), d(Ty, . THu).

Since, f and g are weakly compatible and fv = gv, we
have fgv = gfv and hence fu=gu.
Now, if i~ we obtaim:

yi{d(Tfi, Tu)) < u(%(d(’l‘fu,Tu) + d(Tu, Ty}
— o(d(Ttu, Tu),d(Tu, Tfir)).

Hence, @ (d(Tfu, Tu), d(Tu, Tfi)) = 0 and so d(Tfu,
Tu) = 0. Therefore, Tfu = Tu. As T is one-to-one, we have
fu = vand from fu = gu, we conclude that fu=gu=u.

Let u and v be two common fixed points of f and g,
te., fu = gu = v and fv = gv = v. Without loss of
generality, we assume that u<v. Then we can apply
condition Eq. 2 and obtain:

W(d(Tu,Tv)) = y{d(Tfu, T}

< u(% (d{Tgu, Tfv)+ d(Tgv, Tfu)))— @(d(Tgu, Tiv),d(Tgv,Tfu))

= w(% (d(Tu, Tv)+d{Tv,Tu)}}— o(d{Tu,Tv),d{Tv,Tu)).

so, ¢ (d(Tu, Tv), d(Tv, Tu)) = O and hence Tu=Tv. As T
is injective, we have u=v.

The following theorem can be proved m a similar way
as theorem 4.

Theorem 6: Let (X, <, d) be a regular partially ordered
complete metric space and T: X-X be an imective,
continuous  subsequentially convergent mapping. Let
f, g: X-X be such that fiX)cg(X), f 13 g-non-decreasing,
g(X) is closed and:

y(d(Ttx, Tiy)) < w(%(d(Tg&TfX) +d(Tgy,Tiy)))

%)

- o(d(Tgx, Tfx),d(Tgy, Tfy))
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for every pair (x, y) € X=X such that gx<gy, where ¥ is an
altering distance function and ¢ €®.

If there exists x,€X such that gx,<fx;, then f and g
have a coincidence pomnt m X, that 1s, there exists veX
such that fv = gv.

Moreover, if gx<ggx, ¥ x € X and g and { be weakly
compatible, then f and g have a common fixed point.

Remark 1: Putting T(x) = g(x) = x (the identity mapping
on X) in theorem 4, we obtain the result of Shatanawi
(2011) theorem 2 and additionally by taking ¥ =T (the
identity function on [0, =) in theorem 3, we get the result
of Harjani et ai. (2011), (theorem 1).

Corollary 1: Let (X, <, d) be a regular partially ordered
complete metric space. Let f, g:X>X be such that
{(X)cg(X), f1s g-non-decreasing, g(X) 1s closed and:

V(i fy)) < w(é(d(gx,fy) +dey, ) - p(d(ex, 1), d(ey, £y (10)

for every pair (x, y)eX*X such that gx>gy, where, ¥ 15 an
altering distance function and @ €®. If there exists x, € X
such that gx,<fx;, then f and g have a comcidence pomnt
in X, that is, there exists veX such that fv = gv.

Moreover, if gx<ggx, ¥V x € Xandg and f be
weakly compatible, then f and g have a common fixed
point.

Corollary 1 is a special case of Theorem 3, obtained
by setting T = T.

Corollary 2: Let (X, <, d) be a regular partially ordered
complete metric space and T:X-X be an injective,
continuous subsequentially convergent mapping. Let
f: X-X 18 a non-decreasing mapping, and:

Y (d{THx, Ty )) < w(% (d{Tx,Ttx) + d(Ty,Tfy))) — @(d(Tx,Tfx),d(Ty,Tfy))

(1)

for every pair (x, y) € XxX such that x <y, where, ¥ 1s an
altering distance function and ¢ € @. If there exists x,eX
such that x,<fx,, then f has a fixed point in X.

The above Corollary is a special case of Theorem 3,
obtained by taking g = 1.

The following example support our result.

Example 1: Let X =[0, ) be endowed with the usual order
and the following metric:

x+y, ifxzy,

d(x,y){ 0 ey
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Let T: 3{~X be defined by Tx = x’, for all x¢X. We
define functions £ X=X, @ [0, =)=[0, =) and
W [0, )-[0, =) by:

X t+s
fx=—, gx =2x, ot,s)=
58 oit.s) 1

and¥(s) = 2s. Then we have:

¥ oy 1 oo 5 51,
T, Ty =2(—+—)=—(x"+ < —(x"+
W(d{ ¥ (4 4) 2( ¥ 16( ¥

1 2 Yz 2 x* 1 2 YZ
=2+ Ayt ) - St
(2( R 4)) 4( .

2

X

+ayt 4+
¥ 4)

-4 d(Tex,Tty) + d(Tey, Tix)  d(Tgx,Tfy) +d(Tgy, Tix)
2 4

= w(é {d(Tgx,Tty) + d{Tgy Ttx))) - o(d{Tex, Tfy),d{ Ty, Tix)).

So, all conditions of thecrem 3 are hold. Hence, £ and
g have a unique common fixed point (x = 0).
Choudhury (2009) proved the following theorem.

Theorem 7: Tf X is a complete metric space, then every
weakly C-contraction T has a unique fixed point (u = Tu
for some u e X).

Now, we go through the four mappings defined on a
complete metric space.

Theorem 8: Let (X, d) be a complete metric space and let
E be a nonempty closed subset of X. Let T, 5: E~E be
such that:

W(d(TxSy)) < w(é(d(fx,Sy) + d(gy,Tx))) - 9{d(fx,8y), d(ey, Tx)) (12)

where, We ¥ and ¢ € @ and f, g: E-X are such that:

(A) TEcgE and SECfE.

(a) If one of f(E) or g(E) is a closed subspace of X, then
g and f and also f and T have a coincidence point.

(b) Tf S and f as well as T and g are weakly compatible,
then f, g, S and T have a unique common fixed point.

Proof: Tet x,€E be an arbitrary element. Using (A),
there exist two sequences {x,}7, and {y.}., such that
Vo= Txo =gy = 8%, = B, ¥, = Txy = g%, ., ¥ = T =
8Xanrt> Yanrt = SKape = X e

Note that, if for all n = 0, 1, .., we define d, =
d(y,, v..) and d,, = O for some n = 2k, then y,, = yy.,. That
18, Txy = fxgue = SXg = 2Xg 41, @nd 50 S and g have a
coincidence point. Similarly, if d,,,, = 0, for ann = 2k+1,
then f and T have a comncidence pomnt. So, we assume that
d, #0 for each n. Then, we have the following three steps:



J. Applied Sci., 12 (9): 848-855, 2012

StepI: lim,_ d(y. v...) =0.
Letn= 2k Using Eq. 12, we obtain that:

WY o, Farar ) = WIA(T R 8%5.))

1
< W(E (d(fx5, 8% 50 )+ d8X 31001, Tx 5 1) — @Ay, 8% L A2, TRy ))

1
= M(E(d(y%_py%+,)+ A(¥ ¥ ) = (AT s Yoy 1A (¥ 50520 )

1 1
< w(E Ay Yy DS M(E(d(ygk_,,ygk) +d(yoy, Y D)

(L)
Hence:
(¥ ¥ 20 =AY ¥y

as ¥V is nondecreasing.
If n = 2k+1, similarly we can prove that:

(Y32 Yo ) S ¥ 2005 Y2
Thus, d(y,.., v.) 15 a decreasing sequence of

nonnegative reals and hence it should be convergent. Let,

limnﬂd(ym-l, Yn) - I
From the above argument and m a siunilar way
for n=2k+1, we have:

1 1
Ay, ¥, ) E > dly, - ¥a) S E(d(y“" ¥ )+ ALY )
and if n-eo, we get:
1
relim—d(y, -y ) Sr.
1y 2

Therefore:

limd(y, 1, ¥ )= 21
n—sea

From (II)

W(d(¥ 2y ¥ 200 ) = AT, 8% 5, )

1
< w(Ed(y%_,,yM))— Oy gy s ¥ b g ¥,

Now, if k-= and since ¥ and ¢ are continuous, we
can obtain:

V()< W 20— 0(200)

and consequently, ¢ (2r, 0) = 0. This guarantees that:
(13)

r=1imd(y,,¥,,)=0
n—ye=

from properties of function ¢.

853

Step IT: {y,} is Cauchy.

Tt is enough to show that the subsequence {v,} is a
Cauchy sequence. Suppose that {y,} is not a Cauchy
sequence. Then, there exists €>0 for which we can find
subsequences y,,q, and yyq, of y,, such that n{k)>m(k)=k
and:

d(Yzm(]c)7Y2n(lc) Jze (1 4)
and n(lk) is the least index with the above property. This
means that:

(15)

d(Yzm(k) > ¥anii-2 J=e
From Eq. 15 and the triangle inequality:
9. 2 q
€2 d(¥ o> ¥ aum ) S ¥ 290 Y angro2 )
FA(F 21925 F 2neiya } H HF 21> F 2n)

< e+ d(¥on 25 ¥ ame1) T I F g 15 F an -

Letting k~c and using Eq. 13 we can conclude that:

Hm (Y3095 Y300) = & (16)
Moreover, we have:
A5 20200}~ AT iy T S W ) (17)
and:
(Y gy Y rnon) = s Yo VE W s Ym) 18D
Using Eq. 13, 17 and 18, we get:
9 s> Vo) = Y 21> Yangir) = 8 (19)

Using Eq. 12, we have:
w(d(YEm(kPYEn(k)H)) = w(d(szm(k)’SXZn(k)A))

SV 0 50) s TR )
— ({301, 8K 21000 )-A 8% 2009 T Kamagiy M)

= w(%(d(Y2m(k)—l=y2n(k)+l 3 A 00 Yo )

— (¥ ampg1> Y amion >3 209> Famgo B

Making k-e- the above inequality and from Eq. 19 and
by the continuity of ¥ and ¢, we have:

WOV - 0(es)

and hence @ (g, €) = 0. By our assumption about ¢, we
have € = 0 which is a contradiction.
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Step ITI:Existence of coincidence point and common
fixed point.

Since (X, d) 1s complete and {y,} i1s Cauchy, there
exists z€X such that lim__.y,, = fx,, = z Since, E 13 closed
and {y,}cE, we have z € E. If we assume that f(E) is
closed, then there exists u €E such that z = fu.

Form (12), we see that:

W(A(To, v, 0) = ¥ (d(Tu,8x,)
S 5% )+ K T
(i 5%, A5 T0)

=W ey )+ i3 Tl
—0(d(z,¥5,,)-d(y5, . Tu))

Now, if n—<e.
y{d(Tu,z)) < w(%(d(z,Z) +d{z,Tu})) - @(d(z,2),d(z,Tu )}
and hence:

0(0,d(z,Tu)) < w(%d(Tu,z)) —y{d(Tu,z))<0

and therefore, d(z, Tu) = 0. So, Tu =z Thatis, fand T
have a comeidence point.

Since T(H)cg(E), Tu= zimplies that z € g(E). Letw €E
and gw = z. By using the previous argument, it can be
easily verified that Sw = z.

If we assume that g(E) 1s closed instead of f(E), then
we can similarly prove that g and S have a coincidence
point.

To prove b, note that {3, g} and {T, f} are weakly
compatible and Tu=fu=8Sw=gw =12z So, Tz = fz and
Sz = gz. Now we show that z is a common fixed point.

Again from 12, we can have:

WA(T2,5,,,0) = W(d(T2.8%,,,)
S (5%, + Al T2))
QA 5K 1 (X T2))
=V, o) + 330, T2)

~0(d(fz,¥ 5, ), (55, T2))

If in the above inequality, n-e, since Tz = fz, we
obtain:

y(d(Tz,z)) < V(% (d(Tz,z)+d(z,Tz)))
- o(d(Tz,z),d(z,Tz))

Hence, ¢(d(Tz, z), d(z, Tz)) = 0 and so d(Tz, z) = 0.
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Therefore, Tz = z and from Tz = {z, we conclude that
Tz=fz=z

Similarly Sz =gz = z. Then, zis a common fixed pomt
off,g,Sand T.

Uniqueness of the common fixed point is a
consequence of Eq. 12 and this finishes the proof.

Remark 2a: If in the above theorem, we put the 1dentity
map I nstead of f and g and E = X, we obtan the theorem
2 of Shatanawi (2011).

Remark 2b: Theorem (7) of Choudhury (2009) is an
immediate consequence of the above theorem by taking
f=g=1,T=SandE=X

Example 2: Let X = R be endowed with the Euclidean
metric. Let T, 8: X-X be defined by Tx = 1/8 x and 5x =0,
forall xe X

We define functions f, g: X=3LW: [0, )-[0, ) and ¢:
[0, s)*=[0, =) by fx = 1/2 x, gx = 2x, F(t) = /2 and @(t, s) =
t+s/8. Then we have:

1 1
Z(d(Tx.Sv )1 =—
2( (Tx,8y)) ITh

1 1
—x+|2y - x|
<2 8

8

1 1 1 1
—xX+|2y——-x| —x+|2y-——x
S5y \72 12y - x|

4

= w(é(d(f&sy) +d(gy, Tx))) — {ditx,8y).d(gy.Tx))

8

Moreover, S and f as well as T and g are weakly
compatible, that 1s, all conditions of theorem 9 are hold.
Hence, T, S, f and g have a unique common fixed point
(x = 0) by theorem 9.
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