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Abstract: A copula based methodology 1s presented in this study for the flood frequency analysis of Johor
river basin in southern Malaysia. The objective of this study was to find the best-fit distributions to the flood
characteristics and finding their joint probability for flood frequency analysis. The jomt dependence structures
of the flood characteristics (peak flow (Q,), flood volume (V) and flood duration (D) were modelled using an
Archimedean Copula (t-Copula). The distribution methods were tested to identify the best distribution that
would fit the distributions of various flood characteristics. Based on Kolmogorov-Smirnov (K-3) test the
Generalized Pareto distribution 1s the best-fit distribution for peak flow. On the other hand, General Extreme
Value (GEV) is the best-fit distribution for the flood duration and flood volume. The best fit distributions were
then used to develop the joint Cumulative Distribution Funetion (CDF) of the flood characteristics based on
t-Copula. Peak flow-volume, volume-duration and peak flow-duration pairs were found to be negatively related.
It 13 expected that the bivariate distributions formulated is useful for flood risk assessment and design of

hydraulic structures in Malaysia.
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INTRODUCTION

Flood incidents have to be comprehensively
understood for the design of hydraulic structures and to
develop, plan and manage water resources. To do
this, flood frequency analyses are usually conducted to
generate the probability of annual occurrence of a
floed or peak river discharge. The detail has to be as
precise as possible with the flood duration, volume and
peak flow clearly defined (Renard and Lang, 2007). For
instance, a flood event with 100-year retun period is
logically more damaging than a 10-year return period
flood, even when both flood peak and flood volume are
similar. Therefore, advanced method that can give a jomt
probability of different characteristics viz., flood duration,
floed volume and peak flood flow needs to be developed
and this has been carried out by some researchers
(Gonzalez and Valdes, 2003; Keef et al., 2013; Lief al.,
2013; Requena et al., 2013; Salvadori and De Michele,
2013).

However, if the above-mentioned analysis is done

using traditional bivariate models, not all types of

probability distribution function can be used as the
marginal distribution. Fortunately, this can be overcome
by using the copula method. Using a copula, a
univariate marginal can be linked to its full
multivanate distribution. Moreover, it can link some
flood properties together using a joint-probability
function. This increasingly popular method, first
mmtialized by De Michele and Salvador: (2003), has now
been used to simulate the relationships in various
hydrological events (Chung and Salas, 2000, Kim ef af,,
2003; Shiau and Shen, 2001 ; Cancelliere and Salas, 2004;
Salvador: and De Michele, 2004; Shau et al, 2007,
Zhang and Singh, 2007; McNeil and Neslehova, 2009,
Ghosh, 2010, Guangtao and Zoran, 2012; Xie and Wang,
2013). In spite of this, the technique has not attempted in
Malaysia yet.

The Johor river basin in southern Peninsular
Malaysia which takes up about 14% of the Johor state has
rivers and tributaries that act as important water supply
sources not only for the state itself, but also for
Singapore. Flood is a common phenomenon in the river
basin;, during the past twenty years, the basin had been
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severely flooded for five times. This further magnifies the
need to generate joint flood characteristics probability for
the welfare of mankind.

The objective of this study was to find the best-fit
distribution to the flood variables and also finding the
joint probability of the flood characteristics using a
frequency analysis that was incorporated with the
Archimedean Copula. The parameters under scrutiny were
annual peak flow, flood volume and flood duration. The
final copula, i.e., the t-copula or student Copula, was used
to model the joint dependence of peak flow-volume,
volume-duration and peak flow-duration.

MATERIALS AND METHODS

Study Area: The Johor River basin, covering an area of
2700 km?® is located in the southeast of Peninsular
Malaysia as seen in “Fig. 17. The river originates in
Mount Gemuruh, flows in the north-south direction and
terminates into the Strait of Johor. The total length of the
river is approximately 122.7 km. Geographically, the basin
extends from 1°27N-1°49'N (latitude) and 103°42' N to
104°01' N (longitude). The topography of the basin is

undulating, but quite steep at the upstream. The highest
point in the Johor basin is a mountain-Gunung Tedang
(1276 m). The basin is primarily covered with forest,
rubber and oil palm plantations can also be
found.

Tohor has a tropical rainforest climate with monsoon
rain from November until February, blowing from the
South China Sea. The average annual rainfall is 2,470 mm
with average temperatures ranging between 25.5°C (78 °F)
and 27.8°C (82°F). Humidity is between 82 and 86%.
Floods triggered by heavy rainfall are common
phenomena in the basin. A continuous heavy downpour
in December 2006 caused severe flood in the basin during
the end of 2006 to the beginning of 2007. A large point of
the basin were flooded with water levels as high as 10 feet
(3.0m). The basin was deemed as a suitable candidate for
flood analysis because of these properties.

Hourly stream flow data recorded at Rantau
Panjang gauging station of Johor river for the time
period of 1965-2010 had been collected from the
Department of Trrigation and Drainage, Malaysia.
The location of the river gauging station is shown in
“Fig. 1.

Sub-catchmant of Johor river Basin

0 375 75 225 30 Kilometers

Legend

A Rantau Panjang Gaging Statan

- River

Fig. 1: Map of JTohor River in south of peninsular Malaysia
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Modeling the peak flow, flood duration and flood volume:
This study had used the Generalized Pareto, Pearson,
Exponential, Beta and the Generalized Extreme Value (GEV)
distributions to model the flood variables™ distributions.
The cumulative distribution function (CDF) 1s defined as:

Fix)= [ f()dt )]

The theoretical CDF is displayed as a continuous
curve. The empirical CDF is denoted by:

F(x)= l[Number of observations < x| (2)
n

where, x is the random variable representing the hourly
rainfall intensity.

The Probability Density Function (PDF) 1s the
probability that the variate has the value x:

].f(x)dx —Pla=X<b) 3

For discrete distributions, the empirical (sample) PDF
is displayed as vertical lines representing the probability
mass at each mteger X

fx)=P(X=x) (4)

The empirical PDF is represented as a histogram with
equal-width vertical bars (bins). The bins represent the
number of sample data that belong to a certain interval
divided by the total number of data points. Ideally, a
continuous curve can be properly scaled to the number of
intervals to form a continuous curve.

The following explains the Generalized Extreme value
(GEV) and Generalized Pareto models of the PDF and CDF.

Generalized extreme value (GEV): The general extreme
value with continuous shape parameter (k), continuous
scale parameter (@) and continuous location parameter (1)
have PDF and CDF given as below:

1
—exp(—{1+kzy"*)1+kz2)™" k=0
=17, (5
—exp(—z —exp(-2z)) k=0
o

exp(-{1+kz)™™ k=0 (6)

P2 xpenpz)) k=0

Where:

1+ k%) 0 for k=0
—cof{x{teo  for k=0

Generalized Pareto distribution: The Generalized Pareto

distribution with continuous shape parameter (K),

continuous scale parameter (0>0) and continuous location

parameter (p) have PDF and CDF as below:

117k
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F(x)=1° (7
lexp(,@) k=0
G G
and
1 (Xiu’)—l—ltk
—(l+k——"——) k=0
Fx)=1% G ()
LepcE=Hy g
o o
where:
WX < foo for k=0
s - — for w=0

Goodness-of-fit test: Goodness-of-fit (GOF) tests measure
the extent to which a random sample is compatible
with a theoretical probability distribution function. In this
study, the GOF tests, or more specifically the
Kolmogorov-Smimov tests, were carried out at 5% level
of significance. Details of the Kolmogorov-Smirnov test
are as follows:

Kolmogorov-Smirnov (K-S) test: This nonparametric test
measures the distance between an empirical distribution
and the CDF of the selected distribution. It can also
measure the differences between two empirical
distributions. For a random variable, X and sample
(X}, Xgy Xagorennnnn JX,) the empirical CDF of X [FF(x)] is:

F(x) =i i‘ll(xl <x) (9)
i=l

where,
T {condition) = 1 if true and O otherwise.

Given two cumulative probability functions F, and
F,. the Kolmogorov-Smimov statistic test (D and D)
are:

D, =max(F, (x)-E{x))

D_ = max (F,(x) - E (x)}
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Theoretical aspects of copula: A copula captures the
dependence of two or more random variables. The Sklar’s
theorem (Sklar, 1959) states that the joint behaviour of
random variables (X, Y) with continuous marginal
distributions of u=F(x) =P (X<x)and v =F (y) =P (Y<y)
can be characterized umiquely by its
dependence function or copula, C. For 2-dimensional
cases, all (u,v) relationships can be written as:

assoclated

E,, (X.Y)=C[E (x).F, )] = C{u,v) (10)

where, Fy , (x,y) is the joint CDF of random variables X
and Y and also ¥V x,yeR. When I = [0,1], the bivariate
copula has a distribution function of C = I’~I which
normally satisfies the following basic properties:

¢  The boundary conditions: C(t,0) = C(0,t) = 0 and
Cit)=Cn=tvt=1

¢ Increasing property: C(u, v,)-Clu,, v)-C (u,, V,1C
(w, v,)=0, Yu,u,v,,v, el such that u, <u; and v, <v,

The bivariate copula density, c(u,v), is the double
derivative of C with respect to its marginals and can be
written as:

c(u,v):—azgll(;;v)
Archimedean  copulas: The copula function,
C: [0,1F~[0,1], is called the bivariate Archimedean copula
and can be called (Nelsen, 2006):

Cuv) =47 (0(w) + (v u,ve [0,1] an

where, ¢(u) and ¢(v) are known as the generator
functions of the copula and ¢~ is the mverse of ¢(u) and
G(v). The generator, ¢: I-R’, is a decreasing continuous
convex function such that ¢(1) = 0 and $p(0) = .

In this study, a single Archimedean copula function,
Le, t or student copula was used. The generator
functions, expressions and other properties of this
Archimedean copula functions can be found in Table 1
(Nelsen 2006). Tt should be noted here that application of
a copula family i1z bounded by the flood wvarables’
relationships (e.g., when the Kendall’s rank correlation (T)
dependence measure 1s used.

t-Copula: This copula 13 mvariant when the marginal
distributions are standardized and remains so even when
the random vector X has transformmg components that
are strictly increasing. The copula of ty(v,p,X) is identical

Table 1: The surmmary statistics of flood parameters

Peakflow (m/sec) Duration (h)  Volume (mm)
Maximum 725 600 231
Minimum 77 144 20
Average 248 349 105
SD 164 126 49

to that of t{v.0,P) where P is the correlation matrix
represented by the dispersion matrix, X. The umque
copula then becomes:

12
o) ) F(V— ply 2
cawy= | ar yrae (12)

2
= oo Y

where, t7', is the quantile function of a standard
univariate, t,, distribution. For a bivariate, this is denoted
as C',, where p is the off-diagonal element of P.

The simulation of t copula is not difficult because a
multivariate t-distributed random vector, X=t(v,0,P), can
be generated with normal mixture construction to generate
another vector, U = (t,(X........ L)) in here, t,1s the df
of a standard umvariate, t. For estimation purposes, the t
copula can be calculated as:

o (u)7fv_p(t;l(ul),......t;l(ud )]
T TIL A ()

. ue @1 (13)
where, f,, is the joint density of t(v,0,P)-a distributed
random vector. f;, is the density of the univariate standard
t-distribution with v degrees of freedom.

According to Ti et al. (2012), the copula with two
dependence parameters for the bivariate t-distribution
with v degrees of freedom and correlation, p, Eq. 14 is:

(Forager | h
2 ds dt

flu) g (v 1
Clu,v:e,ey=["[" b
W.v:8.6,)=] %)

T e
(14)

where, t 5, denotes the inverse of the standard univariate
t-distribution’s CDF with 6, degrees of freedom. The two
dependence parameters are (0,.0,). The parameter 0,
controls the heaviness of the tails. For 8,<3, the variance
does not exist and for 0 <5, the fourth moment does not
exist. As 6,-c, Cl(u,v; 8,,0,)-D(uy; 6,).

RESULTS AND DISCUSSION

The summary statistics of the flood parameters are
given in Table 1. The averages of peak flow, flood
duration and flood volume at the study site were
248 m¥sec, 349 hours and 105 mm, respectively. Table 2
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presents the shape parameter (k), continuous scale
parameter (0) and contimuous location parameter (p) of
various distributions used to fit the distribution of flood
variables. Based on the (K-3) GOF tests, it is found that
the Generalized Pareto distribution best fit the peak flow
distribution. On the other hand, GEV is the best-fit
distribution for the flood duration and flood volume
distributions.

Measures of dependence are common to summarize
a complicated dependence structure in a single mumber.
There are three important concepts for dependence
measures viz. the classical linear correlation (p), rank
correlation (k) and the coefficients of tail dependence (v).
These measures are good enough to give sensible
measures for any dependence structure. The values of
p, T and v for each pair of flood variables are given in
Table 3.

The joint cumulative distribution function of the peak
flow and duration, peak flow and volume and duration and
volume are illustrated in Fig. 2-4, respectively. By
horizontally cutting the joint CDF, a set of counters lines
can be obtained. Here, it should be noted that for a given
joint distribution, there may exist more than one possible
flood variable combinations. Hence, the contour lines of
jomt distribution of each pairs of flood characteristics are
llustrated in separate Fig. 2b.

The contour lines of jomt cumulative distribution of
the peak flow and duration are depicted in “Fig. 2”. For
each cumulative distribution contour, there is an inverse
relationship between peak flow and duration. Either can
be as low as needed for any value of cumulative
distribution contour, but then the other becomes large.
Each becomes somewhat higher than cumulative
distribution contour if the other one is low. It means that
if flood peak is high, the flood duration will be low or vice
versa. Also, with higher cumulative distribution contour,
allows higher peak flow and flood duration. Therefore, the

CDF

joint probability graph presented in “Fig. 27 refers to the
chance of two conditions viz. peak flow and flood
duration occurring at the same time. Figure shows jomnt
distribution contours for flood volume and flood
duration at 0.2, 0.4, 0.6, 0.8 and 1.0. The contour line
marked 0.2 means that if the peak discharge is more than
231 m’/sec, the flood duration will be less than 108 h or
vice versa. Other contowr lines can be interpreted in
sinilar way.

The contour lines of jomt distribution of the peak
flood flow and flood volume are presented in “Fig. 3”. For
hydraulic  designing and hydraulic infrastructure
operation, combined occurrence of these two flood
characteristics is often important. The joint probability
graph presented n Fig. 3 refers to the chance of two flood
characteristics viz. peak flood flow and flood volume
occurring at the same time. “Fig. 37 shows cumulative
distribution of flood volume and flood duration for
probabilities 0.2, 0.4, 0.6, 0.8 and 0.9.

Table 2 : Fitting result parameters for various distributions of flood variables
Best fitted distribution Parameters
Gen. pareto Kk =-0.033905
a=184.4800
1= T0.68400
¥ =-0.20041
o=122.450
L= 209,350
k=-0.0740
a=42.820
n=83.017
Based on the Kolmogorov—8mimov test, the GEV distribution is the best
fit to flood volume and duration and Gen. Pareto distribution is the best for
peak flow

Flood variable
Peakflow (P)

Duration (D) Gen. extreme value (GEV)

Volume (V) Gen. extreme value (GEV)

Table 3: An estimate Rho and Nu of the matrix of linear correlation
parameters for a t copula
Peakflow-duration

Peakflow-volumme  Duration-volume

o 0.0165 0.6455 0.4397
v 5.5585 7.7138 26615
T 0.4720 0.0150 0.3330
CDF (Q-D)-t Copula
600 T T . T T
(b) Y
500 N ; ‘e 1
o
Eod 078
400 - o8 4
—_ 05
< 04
o 300} s 0.4 i
0.2
o
200 | # 1
100 | ]
0 L 1 1 L 1
0 100 200 300 400 500 600 700
Q (mP/sec)

Fig. 2(a-b): (a) TJoint cumulative distribution function of peakflow and flood duration (b) Contours showing the
two-dimensional view of joint cumulative distribution function of peakflow and flood duration
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Fig. 3(a-b): (a) the joint cumulative distribution function of peakflow and flood volume; (b) contours showing the
two-dimensional view of joint cumulative distribution function of peakflow and flood volume
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Fig. 4(a-b): (a) Joint cumulative distribution function of flood volume and flood duration (b) Contours showing the
two-dimensional view of joint cumulative distribution function of flood volume and flood duration

The contour lines of jomt cumulative distribution of
the flood duration and flood volume are shown in
“Fig. 4”. Similar to other joint distributions shown in
Fig. 2 and 3, the graph presented in “Fig. 4” notify the
chance of two flood characteristics viz. peak duration and
flood volume occurring at the same time.

Figures 2-4 indicate that the proposed method can
contribute meaningfully in solving many problems of
hydrological engineering designs and management
problems, particularly when a single variable flood
analysis cannot provide the answers. For example, given
a flood event peak flow, it is possible to obtain various
occurrence combinations of flood duration and flood

volume and vice versa which can be helpful for flood risk
management and designing of hydrological structures.
Therefore, it can be remarked that the use of copulas has
greatly improved the modelling of dependencies 1n this
study. The use of copulas has successfully overcome the
disadvantages of correlation and has provided a
mathematically consistent model of dependence.

CONCLUSION

Information related to the peak flow, flood duration
and flood volume are necessary to design hydraulic
structures  for development and

water resources
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flood
mitigation. An Archimedean  copula
t-copula (student copula) has been proposed in this

management as well as assessment and

known as

study  for
these flood peak flow-volume,
volume-duration and peak flow-duration for the
Johor Malaysia’s  flood
frequency and severity have been increasing. As it is not

the modellng of joint dependence of
characteristics viz.
river  basim. events’
possible to change the natural course of events,
concerted actions at a political and institutional level will
certamly help to build the capacity and reduce people’s
vulnerability to flood impacts. A major outcome of the
study 1s the production of jomnt distribution functions of
flood characteristics. It 13 hoped that the study will be
beneficial to a number of stakeholders in the country,
particularly  water resources  development and
management authorities and the disaster management and
development/planming authorities m understanding the

basm’s flood risks.
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