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Abstract: The problem of estimating the phase delay between two real sinusoids with unknown frequency is
discussed. Tt is indicated that the negative frequency contribution is the essential and internal cause of the bias
brought by the Discrete-time Fourier Transform (DTFT)-based phase delay estimator for real signals, when the
sinusoidal frequency 1s quite low or close to the Nyquist frequency. Based on the DTFT-based estimator, a
simple unbiased phase delay estimator with negative frequency contribution considered, is proposed for real
signals with unknown frequency. The new formula for phase delay calculation is derived and detailed steps of
the proposed estimator are presented accordingly. Simulation results show that the proposed estimator has
removed the bias of the DTFT-based one and can attain optimum performance even when the sinusoidal
frequency is quite low or close to the Nyquist frequency. Furthermore, the proposed estimator is proved to be
particularly effective when there are not enough sampled data available for DTFT calculation. So the estimator
is expected to be helpful to those engaged in phaseftime delay estimation for many areas such as radar,

machinery fault diagnosis and industrial measurement.
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INTRODUCTION

Accurate estimation of propagation delay between
signals received at two spatially separated sensors is
involved in many areas such as radar, underwater
acoustics, machinery fault diagnosis and industrial
measurement (Etter and Stearns, 1981; Carter, 1993). The
Generalized Cross Correlation (GCC) method (Knapp and
Carter, 1976; Hertz and Azaria, 1985) is usually used for
time delay estimation by locating the cross correlation
peak of the two received signals. However, the method
requires a prior statistics of the received signals and is not
suitable when the noises are spatially correlated.

For single complex sinusoids, a Discrete-time Fourier
Transform (DTFT)-based delay estimator (So, 2001) is
developed by calculating the phase difference of the
DTFTs of the received signals at the sinusoidal
frequency. For real-valued sinusoids with known
frequency, a Quadrature Delay FEstimator (QDE)
(Maskell and Woods, 2002) is proposed by using the
in-phase and quadrature-phase components of the
received signals. Using the idea of (So, 2001 ; Maskell and
Woods, 2002), two modified discrete-time phase delay
estimators for real signals with known frequency have
been recently developed (So, 2005). The first estimator
removes the bias of the QDE and the second estimator
calculates the phase difference of the DTFTs of two
complex sinusoids derived from the real signals. Tn the

second estimator, the real tone i1s transformed to a
complex tone with the wuse of known frequency
information. As a result, there is no negative frequency
component. However, the estimator is not suitable for real
signals with unknown frequency.

Among the phase delay estimators for real signals
with unknown frequency, the discrete Fourier transform
(DFT)-based estimator and the DTFT-based estimator are
two typical ones. As for the DFT-based estimator, the
phase delay estimate is given by the phase difference of
the DFTs of two real sinusoids at the meximum spectral
line. As for the DTFT-based estimator, the phase delay
estimate is given by the phase difference of the DTFTs of
two real signals at the estimated signal frequency.
However, both estimators have neglected the contribution
of negative frequency when estimating the phase delay
between two real sinusoids. When the sinusoidal
frequency is quite low or close to the Nyquist frequency,
both estimators will bring about significant biases or even
become ineffective. The same thing will occur when there
are not enough sampled data available for DFT/DTFT
calculation.

To remove the bias of the DTFT-based estimator, a
new unbiased phase delay estimator with negative
frequency contribution considered, which can attain
optimum accuracy even when the sinusoidal frequency is
quite low or close to the Nyquist frequency, is developed
based on the DTFT-based estimator in this study.
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PRINCIPLE OF THE DTFT-BASED DELAY
ESTIMATOR FOR REAL SIGNALS WITH
UNKNOWN FREQUENCY

Among the phase delay estimators for real signals
with unknown frequency, the DTFT-based estumator 1s
the primary one. First the signal frequency should be
estimated and then the DTFTs of two sinusoids at the
estimated signal frequency are calculated to obtain the
DTFT phases. The phase delay estimate 1s finally given
by the difference between two DTFT phases.

Consider two real sinusoids with the same frequency:

g (t)=A cos(Znit +8)) (1 )
s,(t)= A, cos(Znft +8,)

where, A, A, is amplitudes, f; is signal frequency, 6, 6,
1s initial phases. The phase delay 1s defined as AG =0,-0,.
The sampling sequences of two sinusoids can be
formulated as follows:

s =Acos(o, n+0) o )
AT

where, w, is digital frequency, w, = Zrufyf, f, 6,, 6, is
sampling frequency, f>2f, N is Number of sampled
points. Mark @, as the estimated value of w, and then the
DTFT of s,(n) at &, 1s computed as (De Vegte, 2002):

According to Euler's formula, a real sinusoid can be
formulated as the sum of two exponential signals with
positive and negative frequencies respectively. Neglect

the exponential signal with negative frequencies m Eq. 3
and then:

5 A rmae) | s
8, (o, )= Z—e -e =
n=0
: o Coy=t)H =ty
Ay sinll@ ZQINZ m BRI e ()
sin[{e, —0y) /2]

2
A ; .
TI-N- & when &, = o,

So the phase of s,@, can be approximated as:

By~ 4 (g, — N /2 (o, — 633/ 2 &)

Similarly, the DTFT phase of s,(n) at &, can be
approximated as:

0, ~ 8, + (0, — @, N/ 2 (e — @)/ 2 ()

From Eq. 5 and 6, the estimate of AB, denoted by A8, is
obtained from the difference between ¢, and ¢

8B, -0, )

That is to say, the phase delay of two sinusoids
equals approximately the subtraction of two DTFT phases
at the estimated signal frequency. We refer to this phase
delay estimator as DTFT-based method.

Note that the DTFT-based estimator referenced here
1s different from the modified DTFT method of So (2003).
The former 1s suitable for real signals with unknown
frequency, while the latter 1s suitable for real signals with
known frequency. The key idea of the modified DTFT
method of So (2005) is to transform the real tone to a
complex tone with the use of known frequency
information. In contrast, the phase delay estimate of the
DTFT-based estimator in this section is given by the
phase difference of the DTFTs of two real sinusoids at the
estimated signal frequency.

UNBIASED PHASE DELAY ESTIMATOR WITH
NEGATIVE FREQUENCY CONTRIBUTION

As the exponential signal with negative frequencies
is neglected in Eq. 4, it is no longer the DTFT of the real
sinusoid but 1s that of the complex one. In other words,
the contribution of negative frequency components in the
spectrum is neglected in Eq. 4. When the sinusocidal
frequency is quite low (for instance, below a frequency
resolution of DFT) or close to the Nyquist frequency, the
negative frequency interference n the spectrum becomes
remarkable (De Vegte, 2002; Xie et al., 1 998) which is why
the DTFT results obtained from Eq. 4 obviously deviate
from the true values of signal spectra. As a result, it
brings about sigmficant biases in phase delay estimation.
The same thing will occur when a small number of
sampled data are talken in DTFT calculation.

Therefore, a new phase delay estimator which 1s
expected to remove the bias of the DTFT-based
estimator, 1s proposed based on DTFT with negative
frequency contribution considered. The new formula
for phase delay calculation 13 derived and detailed
steps  of the proposed estimator are presented
accordingly.

Take account of the exponential signal with negative
frequencies in Eq. 3 and then:

8,(8)= o AL e ey }Hi Sitene) | it
()= S e S
=2 =2 (8)

A H-1 A H-1
=Ry leran | 0 R Y giaran
2 n=0 2 n=0
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Assuming that w,#@®,, we can obtain the following
equation by deduction:

tang, = S A% € ©9)
c, -tang, +c,

Where:

€, = SINQ SINE,C08( 0 ~C, ) HS10, $110, COS((2,-¢,)
¢, = $IN0, 81,8 IN( 0 -0, 81N 8 1N0LSIN( 0L, -, )
Cy = SIN0SINELS11( 00005 S 1N S 100,11 C0,-(L )
C, = SINC,SINE,S1N( 00 -0, ) HSINE S 10, S 10 ,-CL )
0y = N{wg=00)/2; 0, = (0g-00)/ 2505 = (wy-0)/2
g = N(wg-03,)/2, ¢, 1s the phase of S,(@,)

Similarly, for s,(n):

ano, =S tA10, ¢ (10)
¢, -tang, +c,

where, ¢, is the DTFT phase of s,(n) at &,
From Eq. 9 and 10, the following formula for phase
delay calculation 15 deduced:

m, (tan, — tang,) 1 an

AP =arctan[
m, +m, (tan @ +tan, )+ m, tan, tan g,

Where:

— _ 2 2 _ _ _ 2 z
m, = ¢, +¢,¢, m, =¢, +c,,m, =c,C, —CC,, M, =¢; +¢;

Since the true value of signal frequency 1s unknown,
we can’t worl out the phase delay estimate by Eq. 11. On
this account, we suggest removing the unknown variable
w, from Eq. 11 by approximation. When the signal-to-
noise Ratio (SNR) of signals 1s not very low, the signal
frequency estimated by discrete spectrum correction
(Zhang et al., 2001, Kang et al., 2000, Q1 and Jia, 2001,
Chen et al., 2004) is generally quite close to the true value,
Le., @y=w,. It follows that sine, /sine,=N. Synchronously
dividing the numerator and the denominator of Eq. 11 by
sing, BEq. 11 can approximately be expressed as follows:

m, (fan g, —tanq) 1 12)

A8 = arctan[-
m, +m,(tan¢, +taneg, )+ m, tan ¢, tan¢p,

Where:

m; = (N sin &,)*-(sin B’

m, = (N sin @, +(sin )*-2N sin &, sin  cos (B-0,)°
m, =N sin @+sin P sin (B-6)

m, = (N sin @, +(sin p)*+2N sin @, sin B cos {B-G,)
p=Na,

Equation 12 is the new formula for phase delay
calculation.

When wg -0, the whole derivation is similar to what
was mentioned earlier but with no approximation. The
expressions of 0, and 0, are different from Eq. 9 and 10,
but the formula for phase delay calculation is just the
same as Eq. 12.

To sum up, the steps of the proposed estimator are
as follows:

Step 1: Estimate the signal frequency by discrete
spectrum correction, denoted by @&,

Step 2: Calculate the DTFTs of s,(n) and s,(n) at o,
denoted by S,(®,) and S,(&,)

Step 3: Calculate ¢, and tan $p2

P . YCY
Re[$,@,)]
DR CXCY)
RS, (@]

Step 4: Substitute &, N, tand, and tand, into Eq. 12 and
calculate the phase delay estimate

Another contribution of the proposed method 1s that
we can obtain the exact values of initial phases by Eq. 9
or 10 if only the signal frequency 1s known. In contrast,
the conventional parameter estimation methods based on
spectrum correction always bring
significant errors in phase estimation when the sinuscidal

discrete about
frequency is quite low or close to the Nyquist frequency,
because the negative frequency contribution 1s neglected
in the algorithms.

Note that the proposed estimator is proved to be
particularly effective when the sinusoidal frequency is
quite low or close to the Nyquist frequency, or when there
are not enough sampled data available for DTFT
calculation. However, when the signal frequency moves
away from the zero and Nyquist frequency, the traditional
DTFT-based estimator is preferred because the negative
frequency contribution 1s negligible.

The modified DTFT-based delay estimator of So
(2005) 1s unbiased and it assumes known frequency. 1f the
signal frequency is unknown, it 1s suggested that the
problem might be solved by using the maximum likelihood
frequency estimator (Kenefic and Nuttall, 1987; So, 2005).
However, it seems to be unfeasible. The noisy real tones
15 converted mto analytic forms by combining the m-
phase and quadrature-phase components (So, 2005):

£ (KT) =x, (KT + jix, ((k — AJT) (13)
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where, A is a positive integer such that t/20,) = A-T. To
achieve that, the sampling period T should be properly
chosen. However, it is so difficult to achieve due to the
error of frequency estimation and the relative fixity of the
sampling period in practice. In contrast, the proposed
estimator in this section has no requirement of choosing
the sampling period and is obviously more practical than
the method of So (2005).

PERFORMANCE ANALYSIS

Under noisy conditions, the Mean Square Error
(MSE) of phase delay estimate is computed by:

mx[AB] = + o), = (36— AB) + &, (14)

where, 46 is phase delay estimate, [} is bias of phase
delay estimate, p=A6-A6,A61s mean of phase delay
estimate, 49 is theoretic value of phase delay, ¢ is
variance of phase delay estimate.

In general, the negative frequency interference is
negligible when the signal frequency moves away from
the zero and Nyquist frequency. So the DTFT-based
estimator in Section 2 13 generally regarded as an
unbiased one and the MSE equals the variance
approximately. Following the derivations by Zhang ef al.
(2007), the variance of Aé attained by the DTFT-based
estimator for large N and SNR is shown to be:

(15)

var{AD) =

N-SNR

where, SNR 15 SNR of the signals.

Following the derivations m So (2005), the
Cramer-Rao lower bound (CRLB) for phase delay between
two noisy real-valued sinusoids has the expression:

CRLB:; (16)
N-SNR

Comparing Eq. 15 and 16, we observe that the
variance of A% attained by the DTFT-based estimator
equals the CRLB for sufficiently large N and SNR, wlich
indicates the optimality of the DTFT-based estimator
under these conditions.

However, when the signal frequency 1s quite low or
close to the Nyquist frequency, the DTFT-based
estimator brings about significant biases in phase delay
estimation. That 1s to say, it becomes a biased estimator.
As a result, the MSE of 20 considerably exceeds the
CRLB.

The proposed estimator with negative frequency
contribution considered, is expected to remove the bias of
the DTFT-based one and can attain optimum  performance

even when the sinusoidal frequency is quite low or close
to the Nyquist frequency. The dernivation of the
theoretical variance of the proposed estimator is just
similar to Zhang et af. (2007) and the variances of two
estimators are almost identical

SIMULATION RESULTS

Computer simulations have been carried out to
validate the performance of the proposed estimator for
real sinusoids. To draw a comparison, the phase delay
estimates are given by the proposed estimator and the
DTFT-based estimator, respectively.

Under noiseless conditions, the relative errors of
phase delay versus the signal frequency are shown in
Fig. 1. In sunulations, the phase delay equals 3.6°, the
mumber of sampled points equals 1024, the sampling
frequency equals 1024 Hz and the frequency resolution
equals 1 Hz. The sinuscidal frequency varies from
0.5-2.5 Hz m Fig. la and from 509.5-511.5HzinFig. 1b,
both with a step length of 0.05 Hz. The relative errors of
phase delay are computed by comparing the estinated
values with the theoretic value of phase delay. As shown
i Fig. 1, the DTFT-based estimator brings about
significant errors, while the accuracy of the proposed
estimator 13 so desirable that it almost approaches the
lower limit of double precision arithmetic. Tt is observed
that the accuracy of the DTFT-based estimator zooms
quickly and equals that of the proposed estimator when
the signal frequency equals an integer or half an integer,
ie,f;=05Hz, 1Hz 1.5Hz ..., 511.5 Hz That is because
the side lobe of negative frequency components n the
spectrum is just equal to zero at the spectrum peak of
positive frequency components when f; is a multiple of
half a frequency resolution. In other words, the
contribution of negative frequency is void at this very
moment. The cwves in Fig. 1bare similar to those in
Fig. la, owmg to the muror iumage feature of signal
spectrum (De Vegte, 2002). Further simulations also show
that the estimation accuracy of signal frequency directly
affects the performance of the proposed estimator under
noiseless conditions. The more exactly the signal
frequency is estimated, the more exact the phase delay
estimate 1s.

To  exhibit
estimator for a larger range of signal frequencies,
with the smusoidal
frequency varying from 0.05 Hz to 499.95 Hz and a step
length equal to 0.5 Hz The sampling frequency is
changed to be 1000 Hz and the frequency resolution
equals about 0.9766 Hz. As shown in Fig. 2, the proposed
estimator is always superior to the DTFT-based estimator
under noiseless conditions.

the performance of the proposed

simulations are carried out
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Fig. 1(a-b). Relative errors of phase delay under noiseless conditions when the signal frequency is quite low and/or
close to the Nyquist frequency, (a) Signal frequency varying from 0.5 Hz to 2.5 Hz and (b) Signal frequency
varying from 509.5 Hzto 511.5 Hz

102
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0 50 100 150 200 250 300 350 400 450 500
Signal frequency (Hz)

Fig. 2: Relative errors of phase delay vs. a large range of signal frequencies under noiseless conditions
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For real-valued sinusoids in the presence of white
Gaussian noise, extensive computer simulations have
been conducted to evaluate the performance of the
proposed estimator. Comparisons are also made with the
DTFT-based estimator as well as the CRLB. The sampling
frequency equals 1024 Hz and the white Gaussian noises
superimposed on two signals are not correlative. All
simulation results provided are averages of 200
independent runs.

Figure 3-5 show the biases, variances and MSEs of
the proposed estimator and the DTFT-based estimator

15

@ DTFT-based estimator
Proposed estimator

[

[}
0.5¢ ]

0 g — JE— e —
05 10 15 2.0 25

15

(b)
8" i
o

0.5¢ il

0 & S " _—
51 510.5 511 5115

Signal frequency (Hz)

Fig. 3(a-b). Biases of phase delay at SNR=20 dB when
the signal frequency 1s quite low and/or close
to the Nyquist frequency, (a) Signal
frequency varying from 0.5-2.5 Hz and (b)
Signal frequency varying from 510-511.5 Hz

0.20 : .
@ ‘ -------------- DTFT-based estimator L

3 0.15f —— Proposed estimator

g 0.10f //\

A 7

! TN T /\A/\/—\j

Z QO[T e v |
0 . .

0.5 1.0 15 20 25

0.20 )

@ 0.15F
Q
g 0.10

> 0.05 ’\f\’“\/\/\ /”\/\7 e

0 .
510 510.5 511 511.5

Signal frequency (Hz)

Fig. 4(a-b). Variances of phase delay at SNR =20 dB
when the signal frequency 13 quite low
and/or close to the Nyquist frequency, (a)
Signal frequency varying from 0.5-2.5 Hz
and (b) Signal frequency varymg from
510-511.5Hz

versus the signal frequency at N = 1024 and SNR = 20dB,
respectively. Tt is observed from Fig. 3 that the
DTFT-based estimator brings about significant iases
when the signal frequency 1s quite low or close to the
Nyquist frequency, while the proposed estimator is almost
unbiased. Furthermore, the biases of the DTFT-based
estimator vary in the mamner of decaying oscillation. As
shown in Fig. 4, the variances of the two estimators are
almost identical. Figure 5 shows the MSEs of the two
estimators as well as the CRLB. It is seen that the
proposed estimator approaches the CRLB and gives the
optimum performance, while the DTFT-based estumator
considerably exceeds the CRLB owing to the biasedness
of the algorithm. So the proposed estimator is proved to
be superior to the DTFT-based estumator.

Similar simulations are carried out to exlubit the
performance of the two estimators for a larger range of
signal frequencies under noisy conditions. The sinuscidal
frequency varies from 0.5-0 Hz and from 502-511.5 Hz As
shown m Fig. 6-8, the biases and MSEs of the
DTFT-based estimator approach those of the proposed
estimator asymptotically when the signal frequency
moves away from the zero and Nyquist frequency.

To extubit the performance of the proposed estimator
under different SNRs, simulations are carried out with the
SNR varying from 0 dB-30 dB. Figure 9 shows the MSEs
of the proposed estimator and the DTFT-based
estimator as well as the CRLB versus SNR at N = 1024 and
f, = 1.2Hz. Tt is seen that the DTFT-based estimator gives
good performance for SNR<5dB, but for higher SNRs, its
performance gradually degrades from the proposed
estimator wlich indicates the biasedness of the algorithm.

10* @ -
DTFT-based estimator
—=— Proposed estimator

— CRLB

AL et e ]

—

Mean square error
=
Q
~

05 10 15 20 25

e A

Mean square error
=
Q
~

510 5105 511 5115
Signa frequency (Hz)

Fig. 5(a-b): MSEs of phase delay at SNR=20 dB when the
signal frequency is quite low and/or close to
the Nyquist frequency (a) Signal frequency
varyimg from 0.5-25 Hz and (b) Signal
frequency varying from 510-511.5 Hz
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Fig. 8(a-b). MSEs of phase delay vs. a large range of signal frequencies at SNR = 20 dB, (a) Signal frequency varying

from 0.5-10 Hz and (b) Signal frequency varying from 502-511.5 Hz
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Fig. 9: MSEs of phase delay vs. SNR at f; =1.2 Hz
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Fig. 10: MSEs of phase delay versus signal frequency at SNR = 20 dB

The performance of the proposed estimator 15 also
compared with (So, 2005) for the case of known
frequency. Figure 10 shows the MSEs of the proposed
estimator and the modified DTFT-based delay estimator
of (So, 2005) as well as the CRLB versus the signal
frequency at N = 1024 and f; = 20dB. The sampling
frequency equals 1024 Hz. In order to make A equal an
integer, the signal frequency is properly chosen to be 0.4,
05 08 1,1.6,2, 32,4, 64 and 8 Hz. We see that both
estimators are unbiased and the proposed estimator is
evenn more superior to the modified DTFT-based
estimator.

CONCLUSION

The traditional DTFT-based phase delay estimator
for real sinusoids with unknown frequency is biased when
the sinuscidal frequency is quite low or close to the
Nyquist frequency. A simple unbiased phase delay
estimator with negative frequency contribution
considered, has been developed for real signals with
unknown frequency. Simulation results show that the
proposed estimator has removed the bias of the
DTFT-based one and can attain optimum performance
evenn when the simusoidal frequency is quite low or close
to the Nyquist frequency. Furthermore, the proposed
estimator 1s proved to be particularly effective when there
are not enough sampled data available for DTFT
caleulation.

ACKNOWLEDGMENTS

This study was supported by the National Natural
Science Foundation of China (61271449, 61201450)and

the Natural Science Foundation of Chongqng, China
(CSTC 2011BA2015, CSTC 201253A0877, CSTC
2012341047

REFERENCES

Carter, G.C., 1993. Coherence and Time Delay Estimation:
An Applied Tutorial for Research, Development,
Test and Evaluation Engineers. IEEE Press,
New York, USA., ISBN-13: 9780780310063,
Pages: 506.

Chen, K., S. Zhang and X. Guo, 2004. Spectrum rectifying
with negative frequency contribution eliminating.
Chin. J. Mech. Strength, 26: 25-28.

De Vegte, I.V., 2002. Fundamentals of Digital Signal
Processing. Prentice-Hall, Englewood Cliffs, NT.,
USA., ISBN-13: 8780130160775, Pages: 810.

Etter, D.M. and S.D. Stearns, 1981. Adaptive estunation of
time delays in sampled data systems. IEEE Trans.
Acoust. Speech Signal Process., 29: 582-587.

Hertz, D. and M. Azaria, 1985, Tune delay estimation
between two phase shifted  signals wvia
generalized cross-correlation methods.  Signal
Process., 8 235-257.

Kang, D, X. Mmg and Z Xiaofei, 2000. Phase
difference correction method for phase and
frequency n spectral analysis. Mech Syst. Signal
Process., 14: 835-843.

Kenefic, R.J. and A H. Nuttall, 1987. Maximum likelithood
estimation of the parameters of a tone using real
discrete data. IEEE . Ocearic Eng., 12: 279-280.

Knapp, CH. and G.C. Carter, 1976. The generalized
correlation method for estimation of time delay.
IEEE Trans. Acoust. Speech Signal Process.,
24: 320-327.

1167



J. Applied Sci., 13 (8): 1160-1168, 2013

Maskell, D.1. and G.85. Woods, 2002. The discrete-time
quadrature subsample estimation of delay. TEEE
Trans. Instrum. Meas., 51: 133-137.

Q1 G. and X Tia, 2001. High accuracy frequency and
phase estimation of single-tone based on phase of
DFT. Acta Electronica Sinica, 29: 1164-1167.

So, HC., 2001. Time-delay  estunation for
sinusoidal signals. IEE Proc. Radar Sonar Navigation,
148: 318-324.

So, H.C., 2005. A comparative study of two discrete-time
phase delay estimators. IEEE Trans. Instrum. Meas.,
54: 2501-2504.

Xie, M., K. Ding and K. Mo, 1998. Spectrum line
interaction and distinguish ~ method of the
spectrum nterpolation correction. Chin. J. Vib. Eng.,
11: 52-57.

Zhang, F., 7. Geng and W. Yuan, 2001. The algorithm of
interpolating windowed FFT for harmonic analysis of
electric power system. IEEE Trans. Power Delivery,
16: 160-164.

Zhang, H., Y. Tu and P. Niw, 2007. Error analysis of phase
difference measurement using FFT-based method
and DTFT-based method. Chin. J. Electron. Meas.
Instrum., 21: 61-65.

1168



	JAS.pdf
	Page 1


