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Abstract: An improved short-term power load forecast model that uses Support Vector Machine (SVM) was
developed. The new model, called the PSO-SVM forecast model, is based on Particle Swarm Optimization (PSO)
parameters. In traditional SVM models, penalty factor C and kernel function parameter o are generally dependent
on particle experience. When power load forecast data change, however, obtaining satisfactory forecast
precision using these empirical values 1s difficult to accomplish. Therefore, this study used PSO to optimize the
parameter selection methods of SVM in accordance with training data and improved SVM forecast precision.
PSO-SVM is generalizable and easily expandable. To verify the validity of the model, this study selected and
analyzed integral point data on Fujian Province in October 2011. Data for October 1-25 were used for training
and those for October 26-30 were employed for testing. The PSO-SVM model was then employed to forecast
and analyze the October 31 data. Results show that the forecast efficiency of PSO-SVM was better than that
of traditional SVM. In contrast to the forecast efficiency of GA-SVM, PSO-SVM was slightly better. In addition,
PSO-SVM exhibited better operational performance than did GA-SVM.
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INTRODUCTION

Power load forecasting is an important operational
component of electric power departments because it plays
a vital role mn guaranteeing the security and reliability of
a power system. Decision-making m power planning,
dispatching and power market transactions depends on
load forecast. Load change is a complex process that is
influenced by many conditions of uncertainty. From a
macroscoplc  perspective, however, 1t also has
recognizable regularity under certain time horizons. Many
scholars have conducted research on long, medium and
short-term power load forecasting. The mduced ordered
weighted geometry averaging operator, weighted Markov
chain (Mao et al., 2010) model and BP neural network
optimized by Particle Swarm Optimization (PSO) (Cui et al.,
2009) were combined for medium-and long-term load
forecasting. The Grey forecast model-based BP neural
network and Markov chain were used to forecast China’s
electricity demand (Ti and Wang, 2007). Self-organizing
neural network (Zhao and Xu, 2010), least squares
Support Vector Machine (SVM) (He et al., 2011) and
combined SVM and rough set’s model (N et al, 2010,
Li et al, 2009; Yang ef al., 2011) were used to forecast
short-term power load.

Although, good progress has been made in using the
above-mentioned algorithms for short-term  load

forecasting, neural networks and support vector machines
suffer from shortcomings, such as easily falling into local
extrema, overlearning and so on. Some scholars attempted
to establish an SVM forecast model using a Genetic
Algorithm (GA) (Wuet al., 2009) and ant colony algorithm
(Long ef al., 2011) to optinize parameters. However, GAs
entail a series of more complex operations, mcluding
coding, selection, crossover and mutation, whereas PSO
is relatively simple. In the current work, therefore, this
study established a short-term load forecast moedel and
employed PSO to optimize the core parameters of SVM.
The proposed model was analyzed and validated using
actual data on a region.

MATERIALS AND METHODS

Overview of SVM regression: SVM was put forward by
Vapnik on the basis of small-sample statistical learmng
theory (Vapmlk, 2000), which is used primarily to study
small samples under statistical learning rules and is
commonly adopted in pattern classification and nonlinear
regression (Thissen et al., 2003; Kim, 2003).

The sample data set 13 given as D = {(x1, y1)|
1=1,2,...,n}, where x1 € Rn represents the input variables
and y1 € Rn denotes the output variables.

The SVM algorithm seeks one misalignment mapping
from the input space to output space ¢. Through this
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mapping, data > is mapped to a feature space I' and linear
regression is carried out in the feature space with the
following function:

f () =[ox0(®]+b (1)
o:R" =TI

In Eq. 1, b 15 a threshold value. According to
statistical learming theory, SVM determines the regression
function through objective function mmimization:

min %uqr +c2(g+;)}
st y,—o0x)-bLe+E); (2)
®-0(x)+b-y, <e+&;
§.8 20

where, C 1s a weight parameter for balancing the complex
items of the model and training error, also called the
penalty factor; € is the insensitive loss function; and Zi*
and £i are the relaxation factors. £i* 1s expressed as
follows:

oo 0ff(x)-y|<e (3)
[Fi) -y |2 [F(x)-y|>e

By solving the dual problem in Eq. 2, lag range
factors ai, ai* can be obtained, so that the regression
equation coefficient is:

w= i {2, —a)x, 4)

i=1

The SVM regression equation is as follows:
0= -2 K (X,X)+b (5
i=l

where, K (3, X) is the SVM kemel function. Kernel
function types include linear kernels, polynomial kernels
and radial basis functions.

Penalty factor C, insensitive loss function € and
kernel function parameter 0 determine SVM performance.
The o responds to the training data set characteristics,
determines the complexity of the solution and affects the
generalizability of the learning machine. Parameter C
determines the penalty to large fitting deviation: An
excessively large value may cause overlearning but one
too small easily results in less learning. The optimization
of these parameters is therefore important in improving
SVM performance.

Overview of PSO: P30 is an evolutionary computation
based on swarm intelligence; it was proposed by

Kennedy and Eberhart (1995). Tts basic concept stems
from the study of bird predation.

In PSO, particles identify potential optimal solutions
1n a solution space. Three targets-the position, speed and
fitness value-express the characteristics of the particles.
The fitness value is obtained by the fitness function and
15 used to express whether the particle 1s fit or unfit.
Individual positions are updated through the track
individual extreme value (denoted as Pbest) and the group
extreme value (denotes as Gbest). The individual extreme
value 1s the optimal solution of the fitness value m the
particle’s experiences and the group extreme value 13 the
optimal solution of the fitness value in the entire particle
population.

Assuming an N dunension search space, this
study define a population set X, mcluding n particles
X=X, X, ..., X). In X, the ith particle is the position in
the N dimension search space (i.e., a potential solution),
denoted as an N dimension vector Xi = (X, X, .... X
The speed of the ith particle 1s denoted as Vi=(V,, V. ...,
VT, Individual extreme value Pbest is denoted as
Pi= (P, Py, ..., P.)T and group extreme value Gbest is
designated as Pg = (V,,, V., ..., V)T,

In the PSO algornthm iterative process, the particle
updates its own speed and position using Eq. 6 and 7:

VEL = aVE + o (P - X5) + 0,1 (PE - XE) (6)
X = XK+ V) )

InEq. 6, w 1s the inertia weight; d =1, 2, ..., N;1=1,
2, ..., m; k denotes the current iteration times; Vid is the
particle speed; ¢, and ¢, represent nonnegative constants
called acceleration factors; and r; and r, are random
numbers distributed between (0, 1).
PSO algorithm features fast
convergence and strong currency but also suffers from

The classical

shortcomings such as premature convergence, low
precision search and low efficiency of late period search.
Therefore, the PSO precedent derived from GA introduces
a random factor intol the iterative process (mutation
factor (Higasshi and Iba, 2003) via a probability. This
probability 1s used to re-imtialize the particle and expand
the search space. Through this method, the algorithm is
prevented from getting caught in local extrema.

A high inertia weight value is advantageous to
global search, while a low value 15 beneficial to local
search. To balance the global and local search ability of
PSO, this study applied a series of weight selection
methods, mcluding linearly decreasing mertia weight
(Shi and Eberhart, 1999; Tin et al., 2006).
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SVM's Penalty factor C and kernel function parameter
o optimized by PSO: The construction of the SVM
forecast model based on PSO optimization parameters
(PSO-SVM) entails seven steps (Fig. 1).

Step 1: Initialize information, including population size,
particle position, initial particle speed, range of
speed, acceleration factor, penalty factor C,
kernel function parameter o and mutation
probability

The fitness value is calculated with input data. Tn
this step, the SVM kernel function is used to
calculate the fitness value in the training process
The optimal solution of the iterator 1s solved
Evaluate whether the iteration suspension
conditions, including maximum iterator times or
ata precision, are satisfied

When the suspension conditions are not
satisfied Eq. 6 and 7 are used to update the
particle information. Step 2 is then repeated
When the suspension conditions are satisfied,
output optimal solutions C and o

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:

Step 7: C and o are used to construct the SVM forecast
model and then regression forecasting is
executed

RESULTS

Forecast data selection and  pretreatment of
application case: Integral point data were collected from
selected areas in Fujian Province in October 2011. The
data were designated as training, testing and forecast data
sets.

Data for October 1-25 were used for training and
those for October 26-30 were employed for testing. On the

basis of the training and testing, this study constructed
the SVM forecast model. The model was then used to
forecast the October 31 data. Finally, this study analyzed
the predicted and actual data.

To obtain better convergence results, this study
normalized the traimng data, while data testing and
forecasting were carried out at a distribution between
(0, 1). The entire forecasting process was coded by
MATLAB and the LibSVM (Chang and Lin, 2011) toolbox.

PSO and GA are heuristic algorithms. The derived
parameter optimization results differ each time. The
predicted values and precision also fluctuate at a small
scale. Through repeated testing and analyses, however,
the operational efficiency and forecast precision of these
algorithms are generally stable.

Forecast results: Table 1 shows the actual load data,
P30-3SVM-predicted load data, GA-SVM-predicted load
data, traditional SVM-predicted data and each predicted
data set error and Root Mean Squared Relative Error
(RMSRE). RMSRE is expressed as Eq. & where e, is
relative error:

e ®)

RMSRE=4/*2
N

Errors and RMSRE are
indicators of forecast results.
obtained, the more accurate the model forecast.

The contrasting results for the actual, PSO-SVM,
GA-SVM and SVM data are shown m Fig. 2a. The
contrasts in error of the three forecast models are shown
in Fig. 2b.

mportant evaluation
The smaller the values

position, speed, penalty factor C, kernel
function parameter o, ef a,

Input PSO's initial attributes including size,

v

PSO's fitness value

Use SVM's kemal function to calculate the

v

Start the iteration optimal algorithm

If satisfying the
suspend conditions?

Output penalty factor C,
kemal fimction parameter o

v

Build 5VM model and forecast

_.l

Update the PSO's attribuives

the power load

Fig. 1: Iteration algorithm of PSO Optimize SVM’s penalty factor C, kernel function parameter 0
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Table 1: Integral point load data and analysis of forecast results, 31 October 2011
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PSO-SVM GA-SVM SVM
Time Original (kW h™Y Predict (kW h™!) Error (%) Predict (kW h™1) Error (%) Predict (kW h™!) Error (%)
0 957 945.53 -1.19850 951.35 -0.59039 941.43 -1.62700
1 940 929.21 -1.14790 926.05 -1.48400 928.19 -1.25640
2 209 911.42 0.26623 903.40 -0.61606 915.56 0.72167
3 876 889.66 1.55940 896.76 2.36990 899.64 2.69860
4 881 890.10 1.03290 878.85 -0.24404 900.86 2.25430
5 883 892.80 1.10990 873.33 -1.09510 912.17 3.30350
6 948 951.76 0.39662 961.79 1.45460 945.30 -0.28481
7 994 995.92 0.19316 999.83 0.58652 1001.5 0.75453
8 1000 996.50 -0.35000 989.06 -1.09400 1002.4 0.24000
9 1011 987.73 -2.30170 999.20 -1.16720 988.95 -2.18100
10 1035 1002.9 -3.10140 1002.9 -3.10140 1012.2 -2.20290
11 1116 1066.9 -4.39960 1069.2 -4.19350 1056.7 -5.31360
12 1008 1009.8 0.17857 1006.7 -0.12897 1022.5 1.43850
13 959 945,92 -1.36390 938.14 -2.17520 940.34 -1.94580
14 970 961.18 -0.90928 98444 148870 9354.47 -1.60100
15 1005 98600 -1.89050 1002.2 -0.27861 973.23 -3.16120
16 1019 1013.5 -0.54073 1006.4 -1.23650 999.30 -1.93330
17 1155 1103.8 -4.43290 1086.8 -5.90480 1089.8 -5.64500
18 1215 11446.3 -5.65430 1139.4 -6.22220 1131.4 -6.88070
19 1105 1072.3 -2.95930 10590 -4.16290 10788 -2.37100
20 1077 1034.5 -3.76140 1029.9 -4.37330 1037.6 -3.65830
21 1061 1024.5 -3.25160 1021.7 -3.70410 1022.4 -3.63810
22 1035 1012.6 -2.16430 1003.4 -3.05120 1026.6 -0.81159
23 1007 985.90 -2.09530 999.04 -0.79047 979.68 -2.71300
RMSRE 0.0244 0.0277 0.0295
1250
@ o
12004 Original data A
Ga-SVM result / \
1150 4 —=+—. PSO-SVM result .
== SVM result /I
__ 1100
< )
=< 1050
=4
1000
T |
950
900
850 'l 1 1 'l 1 1 1 1 'l 1 1 'l 1 1 'l 1 1 1 1 | |
0o 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hours
4
(b) o - PSO-SVM’serror
\ Ga-SVM'serror
2 " SVM’serror
F -
| P |I '-
0 Iy £ i 7 s \ 1 1 ' ||
) | i - ‘j\l '&‘ !
g ¥ 2 3 ¢ 8 6 T BQ-Q\Q 1011 §=2 W/ 17 18 1920212‘223
- r s
o -2 ——y
g RN / //_
\ o I"( ,"‘:’\ =
-4 I"."l‘l
y .‘. ."
-6 2 |"
.‘ll
-8
Hours

Fig. 2(a-b). Contrast of original data, the forecast results (by PSO-SVM, Ga-SVM and SVM) and the contrast of three

forecast model’s errors
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DISCUSSION

According to (L1 ef al., 2009), when the absolute
value of an error 1s smaller than 3%, the forecast results
can be considered ideal.

As shown in Table 1 and Fig. 2b, of the 24 errors
identified by PSO-SVM, 18 were smaller than 3%, with the
smallest error amounting to only 0.178%. The largest error
was that observed in 31 October 2011 at 18:00, at a value
of -5.65%. Furthermore, two errors approached 3% and
three amounted to about 4%. These results are better than
those derived via GA-SVM (16 errors were smaller than
3%, with the smallest at -0.244% and the largest at -6.22%)
and traditional SVM (17 errors were smaller than 3%, with
the smallest and largest being -0.24 and -6.88%,
respectively).

For RMSRE values, those of PSO-SVM, GA-SVM and
SVM were 0.0244, 0.0277 and 0.0295, respectively. All the
forecast results are 1deal. These results follow the ranking
PSO-3VM>GA-SVM=3VM. During the testing, the
efficiency of PSO was higher than that of GA. The
operation time of PSO-SVM was 92.786364 sec, while that
of GA-SVM was 271.097241 sec. The parameter selection
for traditional SVM was affected by the particle
experiences. An inappropriate parameter causes a large
prediction error. In this study, the SVM forecast data
yielded better results given the frequent adjustment in
parameters C and 0.

For different training and forecast data, parameters
should not be fixed The dynamic adjustment of SVM
parameters according to data characteristics can obtain
results that comrespond with actual forecasts. This
advantage also emphasizes the necessity of using
mtelligent algorithms such as PSO or GA m selecting
SVM parameters from the sample data.

CONCLUSION

*  Parameter selection is important for SVM forecasting.
Traditional SVM suffers from problems such as
overlearning or underlearning. These problems
diminish algorithm performance and affect forecast
precision

*  Usmg the PSO optimization choice, SVM penalty
factor and kernel function parameter yielded good
results. PSO-SVM also exhibited more efficient
operation than did GA-SVM

*  The proposed model enables good forecast results
through actual data confirmation, making it a valid
model. However, because power load is affected by
many external factors, a multi-factor forecast model

should be explored
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