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Abstract: The problem of set approximation m incomplete data 1s addressed. Different with complete data where
the upper/lower approximation of an object set 15 certain and can be given by one set, for incomplete data
upper/lower approximation of a set is uncertain and needs to be bracketed by a set pair. From the completion
view of incomplete data, the semantic interpretations of four boundaries used to approximate a set in incomplete
data are given. It is illustrated that existing definitions based on tolerance class or covering are not enough to
describe precisely the set approximation in incomplete data. Based on a concept of interval granule, new
methods are presented for incomplete data to compute the four approximation boundaries of a set. This study
provides a new view of granular computing on set approximation in incomplete data and is helpful for

computing the uncertainty of a set more accurately.
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INTRODUCTION

In the classical rough set modal (Pawlak, 1991), the
concept of rough set approximation is based on the
In general, an
equivalence relation 1s firstly defined for an information
table and the equivalence classes induced by the
equivalence relation can be thought as elementary or
basic sets defined on a set of attributes. A set is said to
be definable if it 1s the wmion of some equivalence classes
(Grzymala-Busse, 2005; Jarvinen and Kortelamen, 2004,
Pawlak et al., 1995), otherwise it is undefinable. In order to
characterize an undefinable set, a pair of lower and upper
approximations is defined. The lower approximation of a

concept of equivalence relation.

set 15 the union of equivalence classes which 1s a subset
of the set and its upper approximation is the union of
those equivalence classes which has a non-empty overlap
with the set.

Three different definitions of set approxiumations,
called, respectively object-based, granule-based and
subsystem-based, are discussed (Yao, 2003). For the
complete data, three definitions are equivalent, but have
different semantical interpretations. For the mcomplete
data, a direct extension of the object-based definition
(Kryszkiewicz, 1998) is proposed by replacing equivalence
classes of objects with sumilarity classes of objects.
Another definition directly generalizing the granule-based
definition is provided (Yao, 1998). In this definition, a
covering on the object universe is used to substitute for
the partition. However, upper and lower approximations in
above two defimitions are not dual n ncomplete data.
Two dual approximation pairs are studied in (Yao, 2003,

2001). They extend granule-based definition in two ways.
Either the lower or the upper approximation operator 1s
extended and the other one 1s defined by duality. It has
been wverified that granule-based and object-based
approximations may not the same (Yao, 2001) in
incomplete data. Couso and Dubois (2011), under the view
that a covering comresponds to a family of possible
partitions induce by the selection function, two dual
approximation pairs proposed by Yao can be computed by
using the umon and mtersection operators on upper and
lower approximations of possible partitions. Also the
upper/lower approximation of a set in incomplete data is
bracketed by the pair combined by two upper/lower
approximations of two dual pairs.

In this study, we studied the problem of set
approximation in incomplete data from the view of
completion. An incomplete information table is thought as
a family of possible completions, one of them 1s the actual
one. Follow the idea of (Couso and Dubois, 2011), the
upper/lower approximation of a set has its own upper and
lower approximation which are called upper-upper
approximation, upper-lower approximation, lower-upper
approximation and  lower-upper  approximation,
respectively. These four measures have clear semantical
interpretations. For example, upper-upper/upper-lower
approximation of a set can be mterpreted as a set of
objects which certainly/possibly belongs to its upper
approximation.

Tt is verified that existing definitions are not enough
to compute precisely all four measures for approximating
a set in incomplete data. Based on a concept of mterval
granule, new computation formulations are proposed for
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set approximation in incomplete data, they not only
provides a way to compute precisely the uncertainty of a
set in incomplete data, but gives a new view of applymng
the 1dea of granular computing to reasoning n incomplete
data.

INFORMATION TABLES

In the rough set theory, data is usually given in the
form of information table in which a finite set of objects is
described by using a finite set of attributes. In this study,
a basic assumption 13 that any object on any attribute
possesses only one value. If the value is unknown its real
value is one known value of the value domain. For an
information table, if all values in an information table are
known, 1t 1s complete, or it 1s mcomplete.

Complete and incomplete information tables:

Definition 1: A complete information table T7 18 expressed
as the tuple:

T =(U, A, V, F)

where, U 1s a finite nonempty set of objects, At 1s a fimte
nonempty set of attributes, V = {V JacAt} and V, is a
nonempty set of wvalues for an aftribute acAt, £ =
{f JaeAt} and £ U=V 1s an information function.

Definition 2: An incomplete information table T is
expressed as the tuple:

T=(U, ALV, D)

where, U 1s a finite nonempty set of objects, At 1s a fimte
nonempty set of attributes, V = {V JacAt} and V, is a
nonempty set of values for an attribute aeAt, f = {f jac At}
and f; U—v UP(V)) is an information function where P(V )
is the power set of V.

A single-valued mformation table is characterized by
an information function £; U=V, and a set-valued table by
f.; U=P(V,. Ow definition of an information table
combines the standard definitions of single-valued and
set-valued mmformation tables (Orlowska, 1998; Pawlak,
1981). This enables us to study both complete and
incomplete information regarding values of an object.

If f(x)eV uidp}, we have complete information about
the value of x on a. By the empty set ¢, we denote that the
attribute a 1s not applicable to x. For simplicity, we do not
consider this case in the current study by assuming that
information function is of the form £; U—=V,u(P(V,)-{d}).
Furthermore, we assume that for any x€U and a€At, x can
only take exactly one value m V,. However, due to a lack

of knowledge, we may only have partial information about
the actual value of x on a. Such partial information is
expressed as a subset of V,, £(x)eP(V,). That 1s, we only
know that the values of x on a 1s in the set £(x), but do not
know which one is the actual value.

Defnition 3: Let T = (U, At, V, ) be an information table.
If for all aeAt and xeU, {(x)eV, it is called a complete
information table (CTT), otherwise it is an incomplete
information table (TIT).

Example 1: Table 1 is an example of an incomplete
information table T = (U, At, V, ), where U= {O,, O,, O,,
O3, At={a, b}, V.= {0, 1}, V, = {0, 1}.

An incomplete table as a family of complete tables: [nan
incomplete information table, a set of values is used to
indicate all possibilities of the actual value of an object.
Within this framework, an ncomplete information table
can be mterpreted as a family of complete information
tables that are consistent with it (Couwo and Dubois,
2011; Kryszkiewicz, 1999; Lipski, 1979; Nakamura, 1996).

Definition 4: Let T = (U, At, V, {) be an incomplete
information table. A complete information table T° = (U,
At, V, 1) is called a completion of T if and only if for all
acAtand xel, {(x)eV, mmplies " (x) = £(x) and {(x)eP(V,)
implies I (x)ef(x). The set of all completions of T 1s
denoted as COMP(T).

Assume that the number of set-valued elements of T
1s m and the cardinalities of the set-valued elements are
given by Ni(1 =1, 2,.., m). The number of completions of T
is:

Example 2: Consider Table 1 given in example 1. The
number of completions of IT can be computed by
IFLO D #|E(O)| =], (D)] = 2%2%2 = §, where |.| denotes the
cardinality of a set. The eight completions from T1-T8 are
given in Fig. 1.

Although, only one of COMPT(T) is the actual table,
we do not know which one due to incomplete information.
The set of all completions COMP(T) provides an
interpretation of an incomplete information table which 1s

Table 1: An incomplete information table IT

U a b

o {0, 1} 1
Oy 0 0
o {0, 1} 1
04 0 {0,1}
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Tl T2 T3 T4
Ujla b Ufla b Ula b Ula b
olo 1 o1l 1 ol0 1 ol 1 1
ol 0 o %l 0 0 ol 0 € &l 0 0
ealo 1 ol 0 1 ol 1 1 %1 1
ol o o olo o0 6|l 0 ¢ ol 0 0

T5 Té T7 T8
Ul a b Ul a b Ula b Ul a b
ol 0 1 ol 1 1 o |0 1 o] 1 1
o] 0 0 o]l 0 0 o0 O o0 0
ol 0 1 ol 0 1 oll 1 %1 1
ol 0 1 ol 6 1 olo 1 o0 1

Fig. 1: Completions of incomplete Table 1

consistent with the mterpretation of a set-valued element
of T. Recall that any value " (x)eV, may be the actual
value of x. By the defimtion of a completion, any complete
table T'eCOMPT(T) may be the actual information table.

In other words, the available information only allow
us to mfer the possible values of a complete table, but
not the actual values. If one considers a particular table
from COMP(T), some extra information need to be
introduced. Thus, it is more reasonable to interpret an

mcomplete information table T as a set of its completions
COMP(T).

ROUGH SET APPROXIMATION

A logic language: Granular computing 1s an effective way
of thinking and can be applied in many complex problems
involves incomplete, uncertain, or vague information
(Yao, 2001). A logic language has been proposed in
(Yao and Zhou, 2007) and is very efficient on the set
defimtion and approximation (Yao, 2007).

TLet T = (U, At, V, f) be a complete information table,
an atomic formula on an attribute ac At 1s given as a = v,
where veVa, an object xeU satisfies it if £,(x) = v, written
x| = (a = v). All atomic formulas on a is denoted as a.

For a set of attribute A = (a,, a,.. a)cAt a
on A can be expressed
¢ = (a, = v,}(a; = v,) where v V.. An object xeU satisfies
Pif £(x) = v, for Vie {1, 2...., n}, written x| = ¢. All formulas
on A is denoted as A. At is simplified as in this study if
there 1s no confusion.

compound formula

If Wy is a formula, the set of objects m(\) is defined
by:

m() = fxeUx| =y}
For 'vxelJ, m~'(x) is defined by:
m(x)={ye L|x|=y}

m(|) includes all objects satisfying | and m™'(x) is the
formula satisfied by x.

Approximation in complete information tables: Let
T =(U, At, V, f) be a complete information table and X<TJ.
Upper and lower approximation of X can be defined,
respectively as:

apr(X) = el | [x]cX}=wim{y) | ye £m(y)c X}
apr(X)= xeU | [x]~X=¢}=im(y) | ye Lm(y) X =0}

where [x] = m{(m~'(x)} is the set of objects which satisfies
the same formula with x.

For complete information tables apr(X)and apr(X) are
dual to each other in the sense:

apr(X) = (apr(X"))’
apr(X) = (apr(X"))*
where X° = U-X is the complement of X.

Approximation in incomplete information tables: As far
as the approxmnation of a set XcU in an incomplete
information table T, assume that ReCOMP(T) be the
actual table of T and the upper and lower approxumations
of X be apry (X) and apr (X). respectively. Because we
do not know m COMP(T) which one is R, so we can not
obtain the certain values of apr (X) and apr_ (X).
However, under the condition that the actual table is one
of COMP(T), we can compute the upper and lower
approximations for apr, (X) and apr, (X). respectively.

Let ap" (X) aEI apr (X) be the upper and lower
approximation of apr, (X), apr (X) and 3p;' (X) be the
upper and lower approximation of apr (X). We have
following definitions:

apr; (= |J aprp(x)

T'COMP(T)

={xe U| 3T e COMP(T)[x « apr,(X)]}
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apr (= [ (X

TECOMP(T)

={x eU| VT = COMP(T)[x = apr,. 3]}

Above have
mterpretations for the set approximation of a set of an
incomplete information table. For example,

four measures clear semantic

apr,” (X)
contains a set of objects which possibly belong to
apr, (X). In other words, for any object , . apr, (X0, there
exists at least one completion T'COMP(T) such that
xeapr.(¥). While veVa contains a set of objects which
certainly belong to apr (X}, that is, for any completion
T’eCOMP(T). wxcapr, (x), Wwe have xeapr..(). The
similar interpretations can be induced for apr® (x) and
vxeapr, (x). For an incomplete mfermation table T, it 1s
clear that apr' (X).

apr. ' (X) C apr (X) < apr *(X)

—1 — —u
apr, (X) c apr, (X) c apr, (X)

Example 3: Consider Table 1 given in example 1. Let X =
(O,, O,, 0,), based on its eight completions in Fig. 1, four
measures for approximation of X can be computed as
follows:

apr_ (%) = (0,,0,).3pr; (X)=(0,,0,,0,,0,)
apr, (X) = (0;,05,0,).apry, (X) = (0,,05,0,)
apr (X)=(0,,05,0,),4pr, (X) =(0,,05,0,)
apr (X) = (0,,0,).3pr;, (X) = (0,,0,.0,.0,)
apr, (X) = {0,),3pr, (X) =(0,,0,,0,,0,)
apr, (X) = (0;,0,,0,),8pr (X) = (0,,0,,0,)
apr,, (X) = (0,0, ). apr;, (X) = (0,,0,,0,,0,)
apr, (X) = (0,,0,),apry, (X) = (0,,0,0,,0,)

And then, we can get:

@TTI(X)= {0}

ETU(X): {0,,0,,0,}
—1

apr. (X)= {02503, 04}
a_prTU(X): {0,,0,,05,04}

COMPUTATION OF APPROXIMATIONS

For an incomplete nformation table, it 1s inefficient to
obtam the values of four measures of set approximation
through computing the upper and lower approximation of
all completions. In this section, by extending the logic
language to incomplete information table, a new concept
called mterval granule is constructed for describing the
granulation structure of an incomplete information table
T. Tt can approximate the granules induced by the
formulas m COMP(T) from upper and lower directions.
Using this structure, four measures for set approximation
of incomplete information tables can be computed
efficiently.

Interval granules
Definition 5: Tet T = (U, At, V, f) be an incomplete
information table. For an atomic formula (a = v) where
acAt and veV, an object x€U certamnly satisfies 1t if
£(x)=v, written x=" (a = v). x possibly satisfies it if vef(x),
written x=° (a = v).

Definition 6: Let T = (U, At V. Dand A= {a, a,....a }CAt,
a compound formula P on A can be expressed
(a, = v/ a,=v, ., = v,) whereveVy1=1,2....n An
object x€U 1s called certanly satisfied to W if fi(x) = v,
for any 1 written x=", ¥, x possibly satisfies it if v,ef.(x) or
f.(x) = v, for any 1, written x=",F.

Definition 7: Let T = (U, At, V, ) be an information table
and | a formula of £,. two sets m(y) and m(y) are
defined, respectively by:

miy)={xcU|xF" y}={xcU| VT e COMP(T)[x F w]}

E(L]J) ={xeUlxE"y}={xe U|3IT = COMP(T}[x F w]}

The set pair m(y)=(m(y),m{y)) 1s called an interval
granule of . Let £={y,y,,... v, } and k 1s the number of
formules on At, the granular structure on U is:

© = {mly)lm{y,)...my, ) = {mly)mly,)), (miy,).my,),
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Definition 8: Let T = (U, At, V, f) be an information table
and xeU, two sets m'(x) and m '(x) are defined,

respectively by:

m () ={ye LxF y}={ye E‘VT' e COMP(T)[x F ]}
m (%)= {ye £|xE y) = {ye LfT « COMP(D)[x - ]}

Example 4: For the mcomplete table IT in Table 1, the
formulas and granular structure induced by attribute a are
as follows:

L, ={a=0a=1}
1= {({02=04}’{01’02=03=04})= ((P’{opog})}

For the object oy

m™(0,)={a =0}
m"(0,)={a=0}

Example 5: For the Table 1 the formulas and granular
structure induced by attribute At are as follows:

£=f(a=0b=0)(a=0Ab=1}, (a=1Ab=1)}
= {{{0;}.{0;,0,}1).{¢,{0,,0;,0,}). (0. {0, 0,}}}
For the object o,

m™(0,)= {0}

m"(0,)= {,.9;) = (@=0,b=0).a=0b=1)}

For a complete information table, such as
T’ eCOMP(T), for Y=L my)=miy). Let I.(U) = {xxeU,
x= 1}, called the equivalence class induced by y on T".
Wihle 1t 1s clear that for VxeU, 7 (x)=m™ (x)=m™ (x), for
simplication, they are denoted as m™'.(x).

Theorem 1: Let T = (U, At, V, f) be a complete information
table, xcU and W& £. If | = m ™' 1(x), then I(€) = [x]-.

Theorem 2: Tet T = (U, At, V, f) be an incomplete
information table and weZ, for any T°eCOMP(T),

m: () = L. () S mr ().

Theorem 3: Let T = (U, At, V, f) be an incomplete
information table and we£. For ¥X satisfying
my)cXc E(q;), 3T°eCOMP(T) such that I.(J) = X.

Proposition 1: Let T = (U, At, V, ), xU, rem™'(x) and U
For WX satisfying m(y) =X cmiy), 3T°eCOMP(T) such
that [x]. = x.

Approximation computation based on interval granules:
Let T=(U, At, V. ). XcU, £ be the formula set of U on
At Based on the concept of interval granule, new
formulations for computing four measures to approximate
a set of incomplete information table are given by the
following theorems.

Theorem 4:

*apr(=Gapr (X =| [ (miy) my) £ X}

ye i

o apr () = | {miy) » X|miy) = X}

wel

s apr (0 =(|J {miy) - X[m{yy X = ¢}y’

yel

* o (0= Jimip)miy)nX = ¢)

yet

Proof: Let:

B = [U {m(y)m(y) ,G;X}j

wel

For ¥xeP,=3we £ such that xem{yr) and m(yn¢3X where
rem~'(x), according to Proposition 1=3T°eCCMP(T)
such that xe[x]; = M(P)EX=x dees not belong to apr(X),.,,
according to the definition of apr'(X)= x e(ap' (X)) =
B = (apr' (X)) N N

On the other hand, for Wx & (apr' (X)) = IT & COMP(T)
such that x does not belong to_@(X)T. Skl EX, let
y=mp(x)=>1.(y)=[x]¢X, according to theorem 2
=T (P)=m()eX= (apr' (X)) B,

Finally we have (apr (X))’ =B, apr' (X)=(B)" is proved

Let

P, = | J {m{y} ~X|m(y) =X}

wel

For vxeP,= 3w= £ such that em '(x)=xeX.

Because m(y)cX and xeX=xumypcX. Also,
yem () =>mly)c(xumy)cmy),  according  to
theorem 1=3T°e¢COMP(T) such that [x], =(xum{y)) c X
S xeap(X), D xeapr’ (X); =P, Capr (X),.
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On the other hand, for wx eapr®(X), = 3T € COMP(T)
such that xeapr(X), =[x, cX. Assume w=m; (x),=
L.(y)=[x], =X, according to theorem 2 =m{y)cl.
(=X and xel.(y) c miy). Because [x]|=X=xeX= xe
(my)"X)=x e P, Sapr(X), P,

So, apr'(X), =P, Eproved.

Let.

P, = (| {m(y) - Xm(y) nX = 0))

wel

According to the defmition g5y = vix e (apr (X))
=3T" COMP(T) of such that x does not belong to
apr (X) = [x], X =0. Let w=m7(x)=m(y)cl(y)=[x],
>my)nX=9. Becawse IL.(y)=[x} cm(y) and
[kl ~nX=¢=xem(y)and xe X = xe(m(y)-X)=>xePp,
= (apr (X))° P,

On the other hand, for ¥xeP,=3y such that
xemiy)-3) and miy)nX=¢p=>xeX and xemiy)=
(xumypnX=0. DBecause  miy)c(xumiy)cmiy),
according to theorem 2=dT°eCOMP(T) such that
[l = L) = (xom(y) = [x]p A X = = x & (apr (0)° = B, ¢ (@pr (X))

Finally, pr () = P, apr (X)=(P,)° is proved.
Let:

P, = | (m(y) miy) ~ X # ¢}

Yol

For ¥xeP, = 3ye L such that xem(yr) and m(y)inX = ¢.
According to theorem 1=3T¢COMP(T) such that
[x] = miy) = X mX=0 and xe ﬁ'r‘ (X =P c ﬁ;(x)
On the other hand, for vy e gpr’(x) = 31" = COMP(T)
such that x e apr.(3) = [x];. nX = ¢. Let y=m7 (x) > m{y)c
) cm(y) = miy)~X o =xeP, >apr.(X) c P,
Finally gy~ p 1s proved.

COMPARISON WITH EXISTING
APPROXIMATION COMPUTATION

In order to reasoning in an incomplete information
table, classical rough set theory needs to be generalized.
Correspondingly, several generalized defimitions for set
approximation have been presented by using tolerance
classes or coverings.

Let T = (U, At, V, f) be an incomplete information
table, XcU and AcAt. Two straightforward generalized
defimtions for set approximations are given as follows:

Object-based definition:

X={xpkeUs.x)cX)

X = x|x U, 8, ()X =0}
Granule-based defimtion:

X =B U, s,(x)cX}
X =| 48, (x)[x e U,S, (x) ~ X = ¢}

Where:

8,(x)={ylyeUvacA
[ et (ynviE, (mef (x)
T, () I (y) = ¢)]}

However, above definitions are no longer dual. Let C
is a covering of the universe U, two pairs of upper and
lower approximations (Yao, 1998), called as tight pair and
loose pair, respectively (Couso and Dubois 2011), are
defined as follows:

Loose pair:

X' = JiBBeC.BAX =0}

X =7y ={X‘X ceU,vBe([xeB =B cX]}
Tight pair:

X' = J{BBeC,BCX}

X = (X)) = {x[x < U,¥Be C[xc B=>B X # 4]}

According to the existing generalized definitions for
set approximation of incomplete information tables, we
can get these results as follows:

&1= {0}, fz {0,, 05,05, 0.},

2 <2
X' = {02=04}, X' = {01=02,03,04}

For an incomplete information table T = (U, At, V, ),
many methods can be used to generate a covering of U,
two of them are most commonly applied. One 1s based on
tolerance classes of objects (Kryszkiewicz, 1998) and
another is based on the values of attributes (Couso and
Dubois 2011). For example, we can obtain two different
coverings on the of 1J Table 1 as follows.

Based on tolerance classes:

C1 ={{01=03>04}={02>04}>{01=03>04}>{01=02=03>04}}
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Based on attribute values:
Cz = {{02’04}={01=03=04}={01=03}}

So the following results can be easily obtained on, C,
and ¢, respectively:

X'y =4, X'q={0,0,,05,0,}
X' ={0,.0,}, Xy ={0,,0,,0,,0,}
X', ={o Xg ={0,,0,,05,0,)
K@ ={0;,0,}, X' 5=10,,05,0;,0,}

For the two measures apr'(X) and apr (), the
following results have been easily obtamed.

Theorem 5: x' _apr'(x), X' = apr (X)
If € be a covering induced by attribute values.

Theorem 6: Couso and Dubois (2011 ):
X —apr'(X), Xe = apr (X)

However, for another two measuresapr’(¥) and
apr (x), there is still no effective method to compute them
based on the existing set defimtions for incomplete
information tables.

In fact, through examining the definitions of apr*(X)
and gpr'(x), it can been found that in order te discern
whether an object x belongs X to or not, one need to
compared all equivalence classes of x 1n all completions
with X. However, the basic granules in existing set
definitions, either the tolerance class of x or coverings
mnduced by attribute value of x, are umons of some
equivalence classes of x n some completions.

Example 6: Consider Table 1. For the object o, its
tolerance class i1s {o,. 0, 0, (denoted as B ), and the
elements n the covering based on attribute values are
{0, 0, o,} and {0, o} (denoted as, B, and B,
respectively). While the eight equivalence classes of o, in
T, to T; mn Fig. 1are {0, o}, {0}, {0, 0}, {o;} and
{01, 03}, respectively. However, o,eap”(X) 15 not
included in x*, or X*, because the granuE in € and G
related to o, By, B; and B, are not a subset of X. Similarly,
o, exists n x*; and x*; should not included in " (x).
Although, the granules in ¢ and ¢, related to o,, {o,, 0.},
{0, 05, o} and {o,, 0, 0s;, o,} all have a non-empty

intersection with X, the equivalence classes of 0o, in T,, T,,
T, and T, are {o,} which has an empty mtersection with
X.

So granules mn existing set defimtions only provide
an upper approximation for the equivalence classes n all
completions which 1s not enough to compute the values
of apr"(X) and gpr'(x), It 1s necessary to construct a new
method by describing the structure of equivalence classes
in all completions from both upper and lower directions.

CONCLUDING REMARKS

In this study, four measures for set approximation in
incomplete information tables are studied. From the view
of completion, these measures have clear semantic
interpretations. apr (X) and apr (x) contamn the objeocts
which certainly belong to the lower and upper
approximation of X, respectively while ap(X) and
apr’ (x) contain the objects which possibly belong to the
lower and upper approximation of X, respectively. Tt has
been illustrated and analyzed that existing definitions
based on classes and covering can only be used to
compute gp'cxy and g ).

A new concept called interval granules is presented
for approximating the information granules of completions
from both upper and lower directions and then the new
formulation to computing four measures are provided by
theorems. Different with existing methods computing for
every object, the new formulation is constructed only
using the granulation structure of the incomplete
wnformation table, it provides a new way for set
approximation in incomplete data from the view of
granular computing.
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