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Abstract: Due to long time continuous operation and the high sampling rate, the distributed optical fiber
pre-warning system will generate vast amounts of data. Compressed sensing can sample and compress the
signal at the same time thus reduce the data amount to be stored or transferred. Therefore, this article uses
compressed sensing approach to compress the optical fiber pre-warning data. In compressed sampling phase,
the signal is classified using sparse detection method, then more measurements will be taleen for the segment
containing threatening event than the segment of normal operation, through this the amount of data can be
further reduced. In the signal reconstruction phase, the signal compressed sampling process 1s modeled by the
relevant vector machine and the signal recovery 1s implemented by probabilistic parameter estimation methods.
Using Bayesian framework, the sparsity of the signal and the noise each is modeled by a prior. The sparsity and
the noise can be estimated in parameter estimation process and the sparsity needn't be given in advance. The
optical fiber pre-warning system 1s long-rurming system and the sparsity of the signal will change with time,
s0 the automatic sparsity determination ability 13 superior to other existing recovery methods. Experimental
results show that, under the same measurement, the proposed method can reconstruct the signal with high
quality and the reconstructed signal will not affect the positioning result.

Key words: Compressed sensing, data compression, optical fiber pipeline, orthogonal matching pursuit (OMP),

relevant vector machine (RVM)

INTRODUCTION

Transporting oil and gas using pipelne 1s a very
important transportation means. However, in the transport
process, the safety of the pipeline will be affected by
stealing or mining not intentional by the people, natural
disaster, natural aging and other accidents. Therefore,
monitoring the running status of the pipeline becomes
very important. The optical fiber pre-warning system
monitors the pipeline status using distributed optical fiber
and gives early warning for incidents which will threat the
pipeline safety. As a result, very high Nyquist sampling
rate need to be taken and this will generate huge amount
of online data wlich 1s not conducive to data
transmission and storage (Yan, 2006). Conve-ntional
signal compression method is to firstly acquire the signal
using the sampling frequency based on the Nyquist
sampling theorem and then the signal i1s compressed. It
can be seen that this type of method can't avoid large
amounts of data to be collected. The compressed sensing
framework is a technique developed in recent years that
can sample and compress the signal simultaneously. If

adopted for optical fiber pre-warning system, the sampling
rate and the amount of data can be greatly reduced and
the difficulties for transmission and storage brought by
data overload can be overcome.

The coefficient of the signal sampled based on the
Nyquist sampling theory under some transform matrix is
sparse. Compressed sensing framework 1s mainly based
on this. The original signal is projected by random matrix
when compressed sampling and the signal is recovered
when needed using the sparse characteristics described
above. At present, there have been a lot of signal
recovery algorithms to reconstruct the compressed
sampled signal. However, these methods do not take
advantage of the probability of signal characteristics. In
this paper, the Relevant Vector Machine (RVM)
probability model (Tipping, 2001) is used to model the
compressed sampling process and
compressed sampled signal The advantage of tlus
method is that the Bayesian framework for modeling the
process of compressed sensing. Through the priori for
each component of the sparse signal, the most likely value
of each component can be gradually estimated m the

recover the
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iteration process. The most important point is that the
sparsity degree of the signal is not required in advance by
this method but can be obtained in the signal recovery
process (J1 ef al., 2008, Babacan ef al., 2010). Meanwhle,
the algorithm can get an esti-mate of additive noise due to
the signal itself or brought by measurement process. For
optical fiber pre-warming signal, because the system's
long-running  characteristics, the signal sparsity 1s
diff-erent for different time periods, so automatically
obtaining the sparsity of each segment is important. The
traditional methods, such as MP (Mallat and Zhang, 1993)
algorithm and OMP (Tropp and Gilbert, 2007) algorithm,
they are controlled by a threshold value for sparsity
decision but these two methods require many
measurements while the SP (Dai and Milenkovie, 2009)
and CoSamp (Needell and Tropp, 2009) algorithm require
the sparse degree of the signal provided in advance. In
summary, the use of RVM for compressed sensing of
optical fiber pre-warning signal has a great advantage.

BASICS OF COMPRESSED SENSING

Compressed sensing (CS) 1s a theory that samples
and compresses the signal simultaneously and can be
divided into two stages including compressive sampling
stage and recovery stage. Compressed sampling is based
on the sparse characteristics of the signal. Assuming the
original signal x 13 a segment of signal with length N and
¢ is its transform coefficient under the orthogonal
transform matrix or orthogonal bases dictionary WP, the
relation of x and ¢ can be written as x = Pa. If most of the
elements of ¢ are zero, then signal x 1s called sparse under
the transform and if the signal can be approximated by K
(K<<N) nonzero elements of & by the above equation,
then K is called the sparse degree of the signal.

In compressed sampling stage the signal x 1s
projected to a M = 1 dimensional signal y by a
measurement matrix @ with size MxN (M=<<N):

y=0x = 0% a = Ag (1)

where, A can be called the CS matrix. The measure-ement
matrix usually used 1s random Gaussian matrix for its
umversality.  Umwversality refers to the strong
un-correlation between Gaussian random matrices and
other orthogonal matrix or dictionaries and this enables
accurate reconstruction of the original signal from the
measurements. To recover the signal from the
measurement with high probability using Gaussian
measurement matrix, the measurements number M should
satisfy M>K log N. Furthermore, Bernoulli matrix 1s used
n practical applications due to its characteristics of easy

hardware implementation and the sub-Gaussian matrix
is also used as measurement matrix (Eldar and
Kutymok, 2012).

In recovery stage of compressed sensing, the signal
is recovered from the compressed sampled signal. There
have been a lot of algorithms for signal recovery. Initially,
thus problem can be expressed as an optimization problem
of |, norm mimmization but this problem 1s a combimatorial
optimization problem and is very difficult to solve. To
reduce complexity, the l-norm minimization problem is
transformed mto the following 1, minimization problem
(Donoho, 2006):

min”tx”l sb y=Ac
1l

One representative algorithm of this type is the Basis
Pursuit (BP) (Tsaig and Donocho, 2006). The BP algorithm
requires a small number of measurements but has very
high computational complexity. When considering the
additive noise, such algorithms include BPDN
(Chen et al, 1998), the Dantzig Selector (Candes and
Tao, 2007) and etc.

The other type 1s the greedy iterative algorithm, such
as MP, OMP, CoSamp, SP, etc. MP and OMP determine
the sparsity of the signal in the iteration but the algorithm
requires more measurements?? and the reconstruction
reliability 1s not very stable. CoSamp and SP require
pre-set sparsity K which is much difficult in practice.

RVM BASED CS OF OPTICAL FIBER
PRE-WARNING SIGNAL

Relevant vector machine for CS: The Relevance Vector
Machine (RVM) is developed on the basis of the support
vector machine and 15 a supervised machine leaming
methods. This method can create a sparse model for a
given data set. Assuming that the observed data set is
{735 and the one bye one corresponding mput data set
158 {x}, then the relationship between them can be
described as following:

y:iajti)j(x)Jrn:CDaJrn (2)

where, @ = [D,~, @] 15 2 ‘design’ matrix with size NxJ
and each column 1s a basis vector composed of N
elements. The vector n = (n,,-.n,)" denotes the additive
noise and the coefficient « = (&,,~,,)" describes the
sparse relationship between mput and output and if most
of the elements are zero.

From Eq. 1 and 2 it can be seen that RVM can be
taken as compressed sensing with additive noise. The
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‘design’ matrix @ corresponds to the CS matrix A and the
sparse coefficient o corresponds to the sparse signal
transform  coefficients. In compressed sensing, the
origimal signal 1s x = s+s, where the pure signal 1s s and s,
is the additive noise. Therefore, the noise vector n
corresponds to the combination of the noise in original
signal and quantization noise in compressed sampling.
Based on the above considerations, the relevant vector
machine can be used to model the compressed sensing
process. Achieving the sparse coefficient is equivalent to
obtain the sparse signal transform coefficients and the
noise vector can be obtained simultaneously.

Assuming each item of the noise n are 1.1.d. Gaussian
variables with zero-mean and variance o°. Then, the
distribution of the measurement vector y 1s a multivariate
Gaussian distribution with mean ®¢ and variance o”.

In the Bayesian frameworl, priors should be
established for the parameters ¢ and o® that need to be
solved. The Gaussian distribution with zero mean 1s taken
as the prior function for each element of o

plee] 2= | [N(et, 0,27 3)

Because the prior function for each element of the
parameter « is controlled by a parameter A, the model
parameters are over parameterized for input data. A hyper
prior should be established for each A, to meet the
requirements of the hierarchical Bayesian framework. The
hyper prior 1s:

p(ha,b) = ﬁr(h} la.b) (4)

where, T'(4,]a, b) 1s the Gamma distribution with shape a
and scale b which is conjugate to the Gaussian
distribution. The other parameter to be estimated is o°. Let
B =077, then the prior is:

pBle, &) =T(B[c, d) )

According to the above description of the model and
the hierarchical priors, the CS recovery problem can be
formulated as to compute the posterior p(e |y, A, ).

Parameter estimation for signal recovery: Based on the
above models and Bayesian inference rules, the posteriori
probability p(e, A, B|y) should be achieved to get the
distribution of the parameters. However, there are too
many parameters to be estimated in the posterior
probability and it can not be calculated directly. The
posterior can by be factorized according to Bayesian
theorem as:

plee, AB|y) = plaly. A, B) p(4, Bly) (6)

where, p(a|y, A, P) is the posterior probability of the
sparse signal or its coefficient. It can be decomposed by
Bayesian theorem:

plaly, 4, B) = plyle, B) pla [A)p(y|4, B) (7)

Because p(y|e, Py and p(w|A) are both Gaussian
distributions, p(c|y, A, p) and p(y, A, B) are also Gaussian.
The mean and variance of the posterior probability p(a|y,
A, P) are, respectively as:

3 = (BOTH+A)™ (8)

u=pId’y (9

where, A = diag(A,,-Ay). From Eq. 8 and 9 it can be seen
that as long as the parameter A is obtained, the mean and
variance of the sparse signal can be obtained. The
parameter A is solved using the type-Il maximum
likelihood methods. The method is to maximize the
marginalized probability ply|4, B) with respect to the
parameter A. In fact, the uniform prior distribution for 4 1s
used for RVM which is proved to give more sparse
solution when using ¢ = 1 and b = 0 as shape and scale
values, respectively (Babacan ef al., 2010). After omitting
the constant, the logarithm of the margmalized probability
p(y| A, Py with respect to the parameter A is:

1 1
L=—-1 I
205|E7.‘ LYYy

where, %, = 7 T+H®A™'®". Through differentiating the log
likelihood leads to k=v/u* and v, = 1A%, & is the
estimation of A and ¥, is the i-th diagonal element of the
variance of the posterior in the current iteration. Tf taking
the sparse signal ¢ as the hidden variable and using EM
algorithm, the estimation of A is equivalent to
differentiating the log likelihood (Tipping, 2001). And the
estimation of ¢° is:

@:Hy-mr/[N-év,J (10)

However, the above solution involves solving the
inverse matrix which increases the computational
complexity and may lead to ill-conditioned matrix. To
overcome this problem, Tipping proposed an adding
and deletion algorithm to calculate the parameter A
(Tipping and Faul, 2003). The algorithm rewrites the
likelihood function as a function of a certain A, then

obtamn the A, which make the maximum likelihood
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increment. This method avoids the matrix inversion thus
improves the stability of computation and there is not
great decline 1n the final solution.

The two methods described above are both point
estimation methods. Bishop proposed a Variational
Bayesian (VB) approach to approximate the posterior,
other than the pomnt estimation this approach 1s based on
distribution approximation (Bishop and Tipping, 2000). In
this method, the posterior probability distribution can be
approximated by the product of several probability
distributions:

p(e, A, Bly)=q(a)g(A)q(p) (1)

where, = mdicates an approximation rather than equal
relationship. By applying the variational E-step, each
factor of the approximation can be obtained as follows:

qle) = Nie |, Z) (12)
}L:([})q(m SFTy (13)

S = (B, F7E + <A>qm)_ a4
q(x):f[r(ma,ﬁm) (15)
i=a+05,b,=b+05(c?) (16)
aB)-TEI&D) a7
E:c+Nl2,d=d+<Hy—Fq”2>(jf2 (18)

The above formulas show that all the parameters
depend on each other. Iterate these formulas until
convergence, the posterior of the sparse signal cean be
estimated. However, from the above formula can be seen
that, the same as the point estimate is that the inverse
matrix 18 still needed to be solved. So, the computation
complexity will not fall.

In general, after obtaining the mean of the posterior
probability for the sparse signal ¢, the original signal can
be estimated as &=¥n,

CS of optical fiber pipeline pre-warning data: Tn optical
fiber pre-warning system, because the system is long-
running, the collected signal length is very long.
According to the basic principle of compressed sensing,
the signal needs to be processed segment by segment on

the basis of Nyquist sampling assumption, thus

completing the conversion from Nyquist sampling to
compressed sampling. From the computational complexity
considerations, the segment length should not be too
long but too short length can not reflect the compression
ability of compressed sensing, so generally the length is
taken as 1024.

The noise data accounted for a large proportion and
the threateming signal a small proportion in optical fiber
pre-warning system monitoring signal. Therefore, to
further improve the compression ratio, the OMP-based
signal detection method 1s used to detect whether there 1s
threatening evert 1 the compressed sampling
measurement. If there is threatening signal, then more
measurement value will be taken otherwise less will be
taken,

In maximum likelthood based estimation process,
some elements of the parameter A will become very large.
If A, exceeding a threshold, then the corresponding
column vector in @ will be deleted for parameter
estimation. According to Eq. 11, this means the
corresponding sparse coefficient will be zero. Then, the
final accuracy of the recovered signal will be affected by
the value of this thresheld. It should be noted here that,
although the estimation method proposed by MacKay
can accelerate the convergence speed, it will bring ill
conditioned matrix X7 = B®'®+A for too sparse signal.
For this reason, using the low convergence speed
estimation algorithm 1s suitable for compressed signal
recovery. The adding and deleting algorithm avoids the
inverse matrix problem and will not be affected by the ill
conditioned matrix. Therefore, this algorithm will be very
fast for the recovery of compressed sampled optical fiber
pipeline signal. The VB based approach is a distribution
estimation algorithm which needs not to set the threshold.
Of course, the thresheold value is also feasible for this
algorithm.

EXPERIMENT RESULTS

In this study, the simulation is carried out using the
signal gathered on scene. The cable is 500m length with
depth of 0.5 meter underground. To simulate the
threatening event of artificial stolen digging behavior,
shovel 1s used to dig near the optical fiber. The Nyquist
sampling rate 13 4MHzTo decrease the data to be
processed, the sampled signal 1s down sampled to 44.1
KHz to demonstrate the RVM based algorithm.

For the data compression function of compressed
sampling step of CS, there needs to measure the
compression ratio. The compression ratio depends on the
recovery quality, only the compression ratio meets a
certain quality of recovery is feasible. The higher the
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compression ratio, the worse the signal quality of
recovery, whereas the better. The Compression Ratio (CR)
15 defined as the ratio of the length of the original signal
and the measurement number. The recovery quality SNR
is defined as the ratio between the energy of the original
signal and the sum of error square (Tang et al, 2000). SNR
1s defined as:

SNR.=1010g10% x2(n)/§N:[x(n)-§(n)]2 (19)

In the following experiment, the algorithm of the basic
relevant vector machine is denoted as RVM, the adding
and deleting algorithm for the relevant vector machine is
denoted as ADRVM and the variational Bayesian
approach is denoted as VBRVM. Firstly, when the
segment length of the original signal is 1024 and the
measurement number 18 90, the signal recovered by
ADRVM together with the original signal are shown in
Fig. 1. As can be seen from the figure, despite some
recovery noise, the signal restored by ADRVM method
can be a good approximation of the original signal.

In order to compare the reconstruction quality of the
three parameter estimation methods for RVM, in the case
of original signal length taken as 1024, the recovery
quality 1s plotted in Fig. 2 when the measurement number
varies from 50 to 90 with step 5. As can be seen from
Fig. 2 while the adding and deleting algorithm is a
sub-optimal method, it has the best quality
reconstruction. To further compare the performance of
other different algorithms, the recovery quality of OMP
and CoSamp algorithm is evaluated under the same
condition. For CoSamp, the true sparsity is give in
advance for recovery. The SNR of the recovered signal
quality by these two algorithms is also plotted in Fig. 2.
The results show that ADRVM still gets the best
reconstruction quality than OMP and CoSamp. The OMP
detection with ADRVM 1s simulated to further decrease
the compression ratio. This 1s denoted as OADRVM in
Fig. 2. The recovery result shows that this algorithm can
have almost the same quality as ADRVM and is slightly
better or worse than ADRVM for certan measurement
number.

Figure 3 shows the CPU time of ADRVM, OMP and
CoSamp as the measurement number varies from 50 to 90
with step 5. From the result it can be seen that ADRVM
costs the most CPU time and its CPU time will increase
with the measurement number as OMP. However, the CPU
time of CoSamp will not vary with the measurement
number and it costs the least CPU time. Although
ADRVM has the best recover quality with the same
measurement number, it has the worst CPU time.
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-0.02 " ! 1 i i
0.04 T T T T v
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Fig. 1(a-b): Mining signal used m the paper and the
recovered signal using ADRVM  with
measurement number equals to 90
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Fig. 2: SNR comparison of RVM methods, CoSamp and
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Fig. 3: CPU time of ADRVM, CoSamp and OMP as a
function of measurement number
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Table 1: Positioning difference in time

Measurerment number OADRVM (At &) ADRVM (At &)
50 2.91e-5 2.37e-5

55 5.42e-5 5.92e-6

60 4.90e-6 5.92e-6

65 3.00e-6 1.97e-6

70 3.00e-6 0.9%-6

75 1.00e-6 0.9%-6

80 0 0

85 0 0

90 0 0

Fmally, positioning experiment on the reconstructed
signal 1s executed. Assuming the length of the pipeline 1s
L and the time difference of the signal pass by the first
end and the end is A, the position of the threatening
events 18 x = (L-vAt)/2 (Yan, 2006). The above equation
indicates the key of location is to find the time difference.
In this paper, the cross-correlation method 1s used to get
the time difference. Let x(n) and y(n) are the signal
achieved m the first end terminal and the end terminal
respectively, then the cross-correlation function is:

1 N4
R(m)=—%"x(n)y(n+m)
N =

Assuming the maximum 1s got when m = my,, the time
difference is At = m;T, where T, is the Nyquist sampling
time interval. In this paper, the difference of At between
original and the recovered signal is used to evaluate the
positioning result with measurement number varies from
50 to 90 with step 5. Only the algorithms ADRVM and
OADRVM are evaluated for positiomng. The results are
shown in Table 1. As can be seen from the table, when the
measurement number exceeds 80 or CR is 12.8 for
ADRVM, the reconstructed signal can have the same
positioming result as the original signal.

CONCLUSION

Since the Nyquist sampling rate of optical fiber
pre-warning system is too high to produce large amounts
of data, this paper uses compressive sampling methods
for data compression to reduce the amount of data. To
further reduce the amount of data, the OMP detection
method is first used to detect whether a threat signal is in
the measurement. Then, more measurement values will be
taken if there is a threat signal, or less. The Relevant
Vector Machine (RVM) 15 used to model the compressive
sampling process for data recovery. Based on the
Bayesian framework, the sparse data and noise variance
each are given a probability with a prior. Three kinds of
parameter estimation methods are used for data recovery.
Although the sparsity degree of each segment of the
optical pre-warning data varies with time, RVM can
identify the sparsity in the data recovery process, so it 1s
very practical for a long time actual signal. Experimental
results show that RVM can accurately recovery the

optical pre-warning data and the CR can reach 12.8.
Finally, the positioning experiments prove that the
reconstructed data will not affect the positioning result.
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