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Determination of the Optimal Batch Size for a Manufacturing System with Multiple
Deliveries and Random Machine Breakdown
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Abstract: This study 1s concermned with determination of the optinal batch size for a manufacturing system with
multiple deliveries and random machine breakdown. The classic Economic Manufacturing Quantity (EMQ)
model assumes a continuous issuing policy for satisfying customer’s demands and perfect quality production
for all items produced during a production run. However, in a real-life vendor-buyer integrated system,
multi-shipment policy 18 practically used in lieu of continuous 1ssuing policy, while generation of
nonconforming items and unexpected breakdown of production equipment are inevitable. The model is
developed significantly, taking into account jointly multiple deliveries, machine breakdown and imperfect
rework of random defective items.The renewal reward theorem 1s used to deal with the variable cycle length.
An optimal manufacturing batch size that mimmizes the long-run average costs for such an imperfect system
is derived. An illustrating example is provided to show its practical usages.
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INTRODUCTION

In the manufacturing sector, when products are
produced in-house mstead of being acquired from outside
suppliers, the Economic manufacturing Quantity (EMQ)
model is often utilized to deal with the finite
production-inventory replenishment rate in order to
mimmize the expected overall cost per umt time
(Aggarwal, 1974; Tersine, 1994; Silver et al, 1998,
Nahmias, 2001).The classic EMQ model implicitly assumes
that all items produced are of perfect quality. However, in
real-life production systems, due to process deterioration
or other controllable and/cr uncontrollable factors,
generation of defective items is inevitable. Hence, many
studies have been carried out to enhance the EMQ model
by addressing the imperfect quality 1ssues.

The nonconforming items produced, sometimes, can
be reworked and repaired; hence, the overall
production-inventory costs can be significantly reduced.
For example, production processes in printed circuit board
assembly or m plastic injection molding, or m other
industries such as chemical, textiles, metal components,
etc., sometimes employ rework as an acceptable process
m terms of level of product quality. Examples of
research that has mvestigated the effect of rework on
EMQ model are swveyed as follows. Yum and

McDowell (1987) formulated the allocation of inspection
effort problem for a serial system as a 0-1 Mixed Integer
Linear Programming (MILP) problem. Their formulation
permitted any combination of scrap, rework, or repair at
each station and allowed the problem to be solved using
standard MILP software packages. JTamal et al. (2004)
studied the optimal production batch size with rework

process at a single-stage production system. Both
cases of rework being completed within the same
production cycle and rework being done after N cycles are
examined. Mathematical models for each case were
developed; the optimal batch sizes and total system costs
were denived accordingly. Chiu (2007) derived the optimal
lot size and back-order level for an EMQ model with
backlogging, random defective rate, scrap and imperfect
rework process.

In addition to the defective items produced, another
unrealistic assumption of classic EMQ model is the
continuous inventory issuing policy for satisfying
product demand. In real-life vendor-buyer mtegrated
production-inventory  system, multiple or periodic
deliveries of finished products are commonly used at
customer’s request. Goyal (1977) studied the integrated
inventory model for the single supplier-single customer
problem. He proposed a method that 1s typically
applicable to those inventory problems where a product
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is procured by a single customer from a single supplier.
He gave examples to illustrate his proposed method.
Studies have been carried out to address the various
aspects of vendor-buyer supply chain optimization issue.
Diponegoro and Sarker (2006) determined an ordering
policy for raw materials as well as an economic batch size
for fimshed products that are delivered to customers
frequently at a fixed interval of time for a fimite planmuing
horizon. The problem was then extended to compensate
for the lost sales of finished products. A closed-form
solution to the problem was obtained for the minmmal total
cost. A lower bound on the optimal solution was also
developed for problem with lost sale. It was shown that
the solution and the lower bound were consistently tight.
Chiu et al. (2011) paid attention to nvestigation of the
joint effect of a discontinuous issuing policy and an
imperfect rework process on the optimal replenishment
batch size of the EMQ model, developed numerical
method for determmation of the optimal lot size for a
manufacturing syster.

Random breakdown of production equipment is
another common and inevitable reliability factors that
trouble the production plammers and practitioners most.
To effectively manage and control the disruption and
minimize overall production costs, become the primary
task of most manufacturing firms. Tt is no wonder that
determimng optimal lot-size (or production uptime) for
systems with machine failures has received attention from
researchers in recent decades. Example of studies that
addressed the machine breakdown issues are swrveyed
below. Groenevelt et al. (1992) studied two production
control policies to deal with the machine failures. The first
one assumes that the production of the interrupted lot is
not resumed (called no resumption (NR) policy) after a
breakdown. While the second policy considers that the
production of the mterrupted lot will be immediately
resumed (called Abort/Resume (AR) policy) after the
breakdown is fixed and if the current on-hand inventory
falls below a certain threshold level Both of ther
proposed policies assume that the repair time 1s negligible
and they studied the effects of machine breakdowns and
corrective maintenance on the economic lot sizing
decisions. Chiu (2007) investigated the optimal run time
for EMQ model with scrap, rework and random
breakdown. They proposed and proved theorems on
conditional convexity of the integrated cost function and
on bounds of the production run time. Then, an optimal
run time was located by the use of the bisection method
based on the intermediate value theorem.

In this article, we generalise the EMQ model for an
unreliable manufacturing system, taking mto accoumnt
jointly multiple deliveries, machmme breakdown and

imperfect rework of random defective items. Since little
attention was paid to the aforementioned area, this paper
intends to bridge the gap.

FUNDAMENTAL ASSUMPTIONS AND NOTATION

The following assumptions and notation are
considered to develop the model.

Assumptions:

»  Itmay randomly produce x portion of defective items
atarate d

»  The constant production rate P is larger than the sum
of demand rate A and production rate of defective
itemns d

¢ During the manufacturing process, all items produced
are screened immediately and the unit inspection cost
1s included m the unit production cost C

» The Abort/Resume (AR) policy is adopted when
brealkdown occurs. Under such policy, malfunction
machine is immediately under repair and the repair
time 1s constant. The mterrupted lot will be resumed
right after the restoration of machine

s The imperfect quality items fall into two groups, a 6
portion of the imperfect quality items is scrap and the
other portion (1-0) 1s considered to be rework-able.

¢ The rework process itself 1s imperfect, a portion 0,
{0<0,<1) of reworked items fail and become scrap

¢ The finished items can only be delivered to
customers if the whole lot 1s quality assured at the
end of rework

Notation:
K: Setup cost per production run.
Q: Manufacturing batch size to be determined for each

cycle

P;: The production rate of rework process

T: Production time before a random breakdown occurs.

t;:  The production uptime for the proposed EMQ model.

t.:  Time required for repairing and restoring the machine.

t,:  Time required for reworking of defective items.

t,;; Time required for deliverng all quality assured
finished products

H;: The level of on-hand inventory when machine
breakdown occurs

H,: The maximum level of on-hand inventory in units
when regular production process ends

H,: The maximum level of on-hand inventory in units
when rework process fimshes

Cg: Disposal cost per scrap item
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Fig. 1: Op-hand inventory of perfect quality items in
EMQ model with a multi-delivery policy, machine
breakdown and quality assurance issues
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Over all scrap rate per cycle (sum of scrap rates in t,
and t,)
The production cycle length
: Fixed delivery cost per shipment
Unit delivery cost per item shipped to customers
The number of fixed quantity installments of the
finished batch to be delivered by request to
customers
t: A fixed mterval of time between each mstallment of
finished products delivered during production
downtime t,

€
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MATHEMATICAL MODELLING

From Fig. 1, one obtamns the level of on-hand
mventory H; when machine breakdown occurs; the level
of inventory H, when regular production process ends;
the maximum level of on-hand mventory H, when rework
process finishes; the cycle length T, the production
uptime t;; time required for reworking of defective items t,;
time required for delivering all finished products t;, as
follows:

H,=F-dt (1)

H,=H+(FP-d) (t,-1) 2

y
0]

ﬁ dt, (1-
dy,

dt

1
1
1
|

)IK Time
|
I

Fig. 2: On-hand mventory of defective items m EMQ
model with a multi delivery policy, machine
breakdown and quality assurance issues

H;=HHP-d)t, 3)
- )
P
(- 5QU-0) )
toop
ty =nt, (&)
t; =nt, )

The on-hand inventory of  defective items
produced during the production uptime t are as follows
(Fig. 2). Among them a 0 portion is scrap and the other
(1-6) portion of defective items is considered to be

rework-able.
d (t+t,-t) = Pxt, = xQ (8)

During the rework process, a portion 8 of reworked
items fail and become scrap. The maximum level of scrap
items @xQ is:

exQ =[6+(1+6)6,] xQ &)

During delivery time t,, n fixed-quantity installments
of the finished batch are delivered to customers at a fixed
interval of time. Cost for each delivery 1s:
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Fig. 3: On-hand mventory at the customer’s end when
mstallments of the finished batch are delivered

K, +c (D (10)
n

And total delivery costs for n shipments in a cycle

1K, + ¢, (h]= 1K, + C. Q(1—gx) (11)
n

Total holding costs of fimshed products during t, at
manufacturer’s end can be obtained as follows (refer to
Appendix 1):

h(%)(ii)Hjtj - h(nz—;l)H3t3 (12)

Total holding costs for items kept at customer’s end
are as follows (Fig. 3 and also refer to Appendix 2).

ﬂ[%Jr(T—tr)(Hz—Atg)] (13)
2 n

Total production-inventory-delivery cost per cycle
TC (Q) consists of variable production cost, setup cost,
variable rework cost, disposal cost, fixed and variable
delivery cost, holding cost at the manufacturer’s end
during production uptime t,, reworking time t, and
delivery time t,, the holding cost at the customer’s end
during t, and variable holding cost for items reworked.
Therefore, the overall production-inventory- delivery cost
per cycle TC (Q) 18

TC(Q)=CQ+ K+ Cy[x(1-0)Q]+ C; [xeQ]+nK, +

Hdty i, + dox, +

CrlQd-ex)]+h
H1+c1t+2H2+dt1 @, —t)+ H,+H, )

-¢—h[n IJH t,+h, At (t )+*[H3 ty + (T —tr)(H, _ME)}
2n n
(14)

The production cycle length 1s not constant due to
the assumption of random scrap rate and a umformly
distributed random breakdown is assumed to occur in the
production period. Thus, one can use the renewal reward
theorem 1in inventory cost analysis to deal with the
variable cycle length and the integration of TC (Q) to cope
with the random breakdown happening in period t;. The
expected total production-inventory costs per breakdown
happerming in period t; umt time can be calculated as
follows:

E[[ TC(Q) (/1) dt]

' (15)
E[J.DIQ(I—BX)IA-(I/tl)dt]

E[TCU(Q)] =

Ch | (K+nK)h | CRERIA-8)4  CE[x]gh
1-¢E[x] QQ-qE[x]) (-¢E[X])  1-qE[x]

hQx hQ% 2 2
+ 2P0 gE[x]) + 25, (- gE[x]) [QE[x]- (E[x])" - @E[xDI Q- 8)]

hQ(- gE[x]) hQh  hQE[x]d - e)x} by (B[x])* 0 0 Q)

E[TCU(Q)] = o

T

va-b
n

2 2P 2P 2P (1- qE[x])
2Q EETYE Q?» th L E[X](1 8)2 At
+( ) {1 - E[x]) + ( ) —==[¢ P ]+2(17¢E[XD
7ht[7L(P de2h) AR - dl+2h)E[x](1—B)7 . 22, |
P(l- ¢E[x]) B (1- gE[x]) Q- ¢E[x])
(16)

CONVEXITY OF E [TCU (Q)] AND THE OPTIMAL
SOLUTION

The optimal replenishment 1ot size can be obtained by
mimmizing the expected cost function E [TCU (Q)].
Differentiating E [TCU (Q)] with respect to O, the first and
the second derivatives of E [TCU (Q)] are shown in
Egs. 17 and 18:

E[TCUW)]_ 1 {hh nk A K?ﬂ

8Q T1-gE[x]l2P Q@ ¢
L W (Ex]YA0-6)  hA(-0)E[x][2-E[x](+ )]

2P, (1- 9E[x]) 2P, (1 GE[x]) a7n
+(1_l{h(1—<pE[x]) ha hE[X](l—B)k}

n

2 2p 2P,

L2 (1 gepx)+ -2
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SE[TCU(Q)] _ 2(K + K )A~h,t A*
ot Q (1-E[x])

(18)

If:

t, <

T

2(K+nK,)
h,2

also Eq. 18 1s positive. Hence E [TCU (Q)] 15 a strictly
convex function for all Q. The optimal replenishment lot
size Q* can be obtamed by setting the first derivative of
E [TCU(Q)] equal to zero. (refer to Eq. 17):

dE[TCU(Q)] _
dQ

0 (19

One obtains the following after rearrangement:
nK A+ KAi-1/2ht %" 1 h
(-¢E[xDQ*  1-g¢B[x] 2P
hd-¢E[x]) hA
2 2p

_ hE[x](L- 8)
2P,

hEED21-0)’
2B (1-9E[x])

PO, (20)
n

. hA(-8)E[x]

220 gppy 2 LB

o 2(K +nKyA-ht A’

%+?[2E[x]7@[x])2 — @(E[x])’1(1-6)

1

v {(“T*I)}H %hﬂ (1= gELY + i, 1)

{

h (ELD (-0
P

J—

2 E[x](1-6)
P Pl

}(1—<pE[x])+
(2D

Special cases: Suppose all items produced are of perfect
quality (ie., x = 0) and the breakdown factor is not
considered (t. = 0), the model becomes the same as the
classic EMQ model with a multi-delivery policy:

TC, = CQ+K+hF(t1)+ {“—_l]Htg}
2 2n (22)

H

nk, -¢—CTQ-¢—h—2{—t3 +T(H—2.tz):|
21n

The expected production-inventory-delivery cost E
[TCU, (Q)] for this special model can be derived as
follows:

(11): 2000-2006, 2013

E[TCU, (Q)]= cA+W+ C, e DA

(0o (e 1

h, QA
2P

Convexity of E [TCU (Q)] can be proved as shown in

Eq. 21 and optimal lot size Q* can also be derived

(23)
n-1)(hQ_hQh

2 2P

b
n

nQ,
2

L

n n

accordingly, as shown in Eq. 22:

PE[TCU(Q)] _ 2(K+nK )4 o (24)
FIeg Q’
and:
. [ 2(K +nK )2
Q= {&+(n—1)h[1_(&)]} (25)
P n p
NUMERICAL EXAMPLE

Assume a product can be manufactured at a rate of
60,000 units per year and this item has experienced a at
demand rate of 3400 umts per year. During production
process a random defective rate is assumed to be
uniformly distributed over the mterval [0, 0.3] and
among defective items a portion 8 = 0.1 is considered to
be scrap and other portion can be reworked and repaired
at a rate P, = 2200 umts per year. During the rework
process, a portion 8, = 0.1 of reworked items fails and
becomes scrap. Additional values of parameters used in
this example are given below: C = $100 per item, Cy, = $60
peritem reworked, C; = 320 per scrap item, tr = 0.018
years. h = $20 per item per year, h; = $40 per item reworked
per unit time (year), h, = 380 per item kept at the
customer’s end per umit time, n = 3 mstallments of the
finished batch are delivered per cycle, K = $20,000 per
production run, K, = $4,350 per shipment, a fixed cost,
Cr=30.1 per item delivered. The optimal replenishment
lot size Q* = 1693 can be calculated from Eq. 21.The
optimal expected production-inventory -delivery cost
E [TCU (Q*)] = $7477 can also be computed from the
Eq. 16

CONCLUSION

We extend a vendor-buyer integrated model of
Chiu et af. (2011), considering the effect of an imperfect
production process subject to random breakdown. When
breakdown occurs, the Abort/Resume (AR) policy 1s
adopted. Under such policy, malfunction machine is
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immediately under repair and the repair time is constant.
The interrupted lot will be resumed right after the
restoration of machine. The model 15 developed, taking
into account jointly multiple deliveries, machine
breakdown and imperfect rework of random defective
items.

The mathematical modelling 1s used in this study. The
reward theorem 1s utilized to deal with the

variable cycle

renewal
length of the proposed system. The
long-run average production-mventory-delivery cost
function is derived and proved to be convex. The closed-
form solutions m terms of optimal replemshment lot
size are obtamed A numerical example i1s provided to
demonstrate its practical usage. A possible extension
of this work may be set m the
considering other probability distributions of machine
breakdown.

direction of
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Appendix 1:
Cormputations of the holding cost of finished products during 5 (ie.,
the very last term in Eq. 12) are as follows:

. When n = 1, the total holding cost in delivery time t; =0 are:

wfH. by iz H, (26)
22 2
. When n =2, the total holding costs in delivery time t; become:
1y, (n—1)
h| = Ht, =h| =~ |Ht 27
Qb e
. When n = 3, the total holding costs in delivery time t; are:
h EXE+EXt_3 —h 221 Ht, (28)
303 3 3 3

. When n =4, the total holding costs in delivery time t; are:

3 L, 2 6 H oG 3”2*1 Ht, (29)
474 474 44 r

Therefore, the following general term for total holding costs during
delivery time t; can be obtained:

el B
h[n_ng[zl;lJHtg :h[—(“ml)jm (30)

Appendix 2:

Computations of the holding cost at the customer’s end during  are
as follows. Because n instalments (fixed quantity D) of the finished lot are
delivered to the customer at a fixed interval of time t,, one has the following:

pB;_k 31
n

At the customer’s end, the demand between shipments is (At,). If we
let I denote nurmber of items that will be left over after satisfying the demand
during each fixed interval of time t, (refer to Fig. 3), then:

I=D-At, (32)

From Fig. 3, one can calculate the average inventory as follows:

. Average inventory:

_|(D*L, +HI(t+t+t
N TR

+[W}r._ (33)

2

+[(D+(n—1)I)+[(D+(n—1)1)—mn]t }
3 n

Substituting Eq. 31 in Eq. 32, the average inventory becormes:

. Average inventory:
:[D_Ethtn +[D+I—&tn}n +[D+ZI_&tnjtn
2 2 2
+...+[D+(n —1)I—%tht“ +[n—21](t1+t2+t,) (34

= n[D - &thtn +Mltn +[ILIJ(t1 i, +1)
2 2 2

Substituting Eq. 29 through 31 in Eq. 33, the following general term
for average inventory at the custormer®s end can be obtained:

(ot Jus(mon A
2 2
---+[D +(n—1)I—%thtn +[n—;J(t1+t2+t,) (3%

R L S AT
2" n

Therefore, total holding cost for iterns kept at the customer’s end is:

h?z[% (T - t)(E, - )] (36)
n
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