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Abstract: Support Vector Machine (SVM) is a novel modeling method that is valuable in regression and
classification. Kernel parameters setting in the SVM training process, along with the feature selection,
significantly affects system identification accuracy. The objective of this study is to obtain the better algorithms
for better prediction accuracy. This study develops Principle Component Analysis (PCA) for feature selection
and a grid searching and k-fold cross validation (GSCV) approach for parameter optimization in the SVM.
Numerical and engineering results indicate that SVM based on PCA can be used for identification of nonlinear

functions with related mput vanables, while the SVM based on GSCV 15 useful for complex system identification

with limited number with kinds of uncertainties.
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INTRODUCTION

The system identification is a very difficult task
which consists of determining the mathematical model of
a system or predicting its behavior even 1f it 1s a nonlinear
system. In the modeling, all available mdicators can be
used, but mputs data may be comrelated and limited
number with kinds of uncertainties.

At present, a new kind of regression method-SVM
has been applied to regression for reliability analysis
(Rocco and Moreno, 2002) and system identification and
it has become a popular tool in solving the problems such
as small samples, high dimensions, nonlinear and local
mimimum problem, due to its remarkable characteristics
such as good generalization performance, the absence of
local minima and the sparse representation of solution.
Unlike most of the traditional methods which implement
the Empirical Risk Mimmization Principal, SVM
mnplements the Structural Risk Mimimization Principal
which seeks to mimimize an upper bound of the
generalization error rather than mimmize the traiming error
(Vapnik, 2000). This eventually results m better
generalization performance in SVM than other traditional
methods.

In developing a SVM model, the first important step
is feature selection (Lee et al., 2007). If the SVM is
adopted without feature selection, then the dimension of
the input space is large and non-clean, lowering the
performance of the SVM. Thus, the SVM requires an
efficient and robust feature selection method that discards

noisy, irrelevant and redundant data, while still retaining
the discriminating power of the data. Features extracted
from the original data are adopted as inputs to the
regression in the SVM.

However, the SVM embeds tuning parameters that
control the training setting such as kernel parameters and
the trade off variable C. These parameters have a
regularization
during the tramning process. If their values are not trained,
these variables may diminish the overall performance of
the regression if not well chosen. In fact, given a
regression task, picking the best wvalues for these
variables is a nontrivial model selection problem that
needs either an exhaustive search over the space of
hyper-parameters or an optimization procedure that
explores only a finite subset of the possible values

effect on the cost function mimmized

{(Chapelle ef al., 2002). This procedure requires automatic
grid search (Wang ef al, 2005) over the space of
parameter values and needs an algebraic criteria to
estimate upper bound of the expected error (Ayat ef al.,
2005), especially when there are more than two hyper-
parameters.

In this study, we considered PCA for feature
selection and k-fold cross validation with grid searching
for optimization of model parameter selection. Numerical
examples show that SVM based on PCA can be used for
identification of nonlinear functions with related input
variables, while the SVM based on GSCV 1s useful for
complex system identification with himited number with
kinds of uncertamnties.
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PCA FOR FEATURE SELECTION

The regression accuracy rate of SVM is influenced by
not only the kernel parameters, but also other factors
including the quality of the feature’s dataset For
instance, the correlation between features influences the
regression result. Accidental elimination of important
features might decrease the accuracy rate of prediction.
Additionally, some features of the dataset may have no
effect at all, or contain a high level of noise. Removal of
such features can increase the search speed and the
accuracy rate.

Feature selection methods can be categorized as filter
models and wrapper models (Liu and Motoda 1998). Filter
models utilize statistical techniques, such as Principal
Component Analysis (PCA), factor analysis (FA) and so
on. Principal Component Analysis (PCA) is a well-known
method for feature extraction. By calculating the
eigenvectors of the covariance matrix of the original
mputs, PCA linearly transforms a high-dimensional input
vector into a low-dimensional one whose components are
uncorrelated (Cao et al., 2003).

Given a set of centered input vectors:

1
x(t=1-13 x=0)

each of which is of m dimension x, (x, (1), x,(2), ..., x, (m))’
(usually m<1), PCA linearly transforms each vector x, mto

a new one s, by:
8 =Tk, ()

where, U 1s the m>m orthogonal matrix whose 1th column
1, is the ith eigenvector of the sample covariance matrix:

C :lfllethlT

other words, PCA firstly solves the eigenvalue
problem (2)

Auw =Cu,i=L--m (2

where, A, is one of the eigenvalues of C. u is the
corresponding eigenvector. Based on the estimated u, the
compoenents of s, are then calculated as the orthogonal
transformations of x;:

s,i)=vlx,,i=L--,m (3)

The new components are called principal

components. By using only the first several eigenvectors

sorted in descending order of the eigenvalues, the number
of principal components in s, can be reduced (chosen by
the ratio of cumulative contribution, usually >85%). So
PCA has the dimensional reduction characteristic.

SUPPORT VECTOR MACHINE FOR
REGRESSION (SVR)

After feature extraction using PCA, the training data
points can be expressed as (3, Vi), (85 V)b oo (3, ¥,
(3,€R*, n<m 15 the transformed input vector, y,eR 1s the
target value). The so-called Lagrange multipliers ¢* and

*, 1= 1 are obtained by maximizing the dual function of
(4), which has the following form:

Lo(e )= Xy.(e + B) e X (o +B)

D (4
— o 2 2o B+ BK(s,s,)
il =l
with the following constraints:
El‘,(oci—ﬁ,)=o, 0<a,p<C  i=l--1 (5)

i=l

given the training data (s, y;), an mner product kernel K
(s %)) $s)-P(s), an intensive zone € and a
regularization parameter C. The dual problem can be
solved via standard quadratic programming. Once
solutions a* and PB* are calculated, the regression
function is constructed in terms of these values as:

Py = B — BK(,x) (6)

i=1

In the regression problem, both £ and C play an
important role for noise and smoothness of the function,
respectively. However, obtaining the optimal parameters
is still a challenge.

GSCV FOR MODEL PARAMETERS SELECTION

Model selection gained a particular interest when
neural networks established effective classification
models on many pattern recognition problems in the late
1980s. An mcorrect choice of one of these elements, may
lead to a high generalization error. Two major parameters
1 SVR, £ and C, have to be set appropriately.

Grid search (Hsu et al., 2003) is the popular way to
determine the values for parameters £ and C. The k-fold
cross validation strategy is one of the most widely used
error estimation approaches. It enables us to compare the
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predicted response values with the true values based on
the mformation available in a given data set. The key
applications of the k-fold cross validation strategy are
model performance estimation, tuning learning model
parameters and assessing various choices such as the
search strategies.

In this approach, the N sample pomts are divided into
k different data folds. Tn each data fold, N/k sample points
are placed and they are stratified in order to properly
explore and describe the design space. The process of
stratification is very important at this stage of cross
validation. Among the k data folds, k-1 data folds are used
to tram the SVM models while the remaming one data fold
15 used to validate. Subsequently the processes of
training and validation are performed for k times with each
time a different data fold s used for the validation.
Subsequently, the cross validation error of the predictions
which 1s called normalized mean square error (INMSE) can
be calculated using the following expression:

g, = (N/k)szz(y v

N/k

——— ¥ (F.-v)

(N/k)—l P

7

where, ¥, represents the predictions, v denotes the mean
of the actual value. The SVM models whose parameters
chosen by gnid search are tested by k-fold cross
validation and the optimal parameters are which minimize
the sum of e, for each fold

EXAMPLES

Numerical example: Let us consider the function as
follows:

fix, y) = xy+y &)

where the correlation coefficient of input variables 1s
0.7764. The 15 data pomts of x, y chosen by MCS and the

comparison of predicted values for SVM, PCA-SVM,
GSCV-SVM and PCA-GSCV-SVM algonthims are shown in
Fig. 1 and Table 2. As seen from Fig. 1, the prediction
effect 13 very bad for test set by traditional SVM algorithm
because of the correlation between nput vanables and
few samples, while the preprocessing of feature selection
and the optumization algorithm can wmprove the regression
effect a lot. As shown in Table 2, the mimmum NMSE is
produced by PCA-GSCV-SVM with 8.45x107° and SVM,
PCA-SVM and GSCV-SVM algorithms provide NMSE of
0.744, 3.25<107° and 7.24x107°, respectively, which
shows that both of SVM with feature selection by PCA
and with model parameter optimization by G3CV can
increase regression accuracy rate and SVM with feature
selection together with parameter optimization is the most
efficient algorithm m all of the algorithms presented here.

Engineering example: As shown in Fig. 2, the cantilever
15 connected to the base by three M bolts, there are
some flexibility and uncertainty in the root of a cantilever

F(x,y) = xy+
3100 ‘ i ( y)‘ y+y
o f(x,y)
N X o svM
2900 A GSCV-SVM
2800} V PCA-GSCV-SVM
2700% .
= [n]
< 2600 o o 4
% 2500} ¥ o 1
2400} - o J
2300} A
2200} A
v
2100 . . . . . {
2 4 6 8 10 12 14
Data points

Fig. 1: Comparison of predicted values for different
algorithms

Table 2: Model parameters with different algorithms

. . Parameters SV PCA-SVM GBCV-SVM  PCA-GSCV-SVM
corresponding value of f(x, y) are shown in Table 1. The Y 000l 0001 2107 Py
data points at odd locations are used as the training set C 10 10 2x1073 20
and the remaining data points are used as the test set. The =~ NMSE 0.744 325107  7.24x107 845107
Table 1: x,¥ and f(x,y)
Data 1 2 3 4 5 4] 7 8
X 339 330 2.81 3.03 344 3.07 3.00 343
¥ 576 635 558 578 1] 580 555 461
1, ¥) 252864 27305 2125.98 2329.34 2957.04 2360.6 2220.0 2028.23
Data 9 10 11 12 13 14 15
X 330 313 312 2.74 276 2.88 2.96
¥ 651 605 653 575 545 572 594
fix, y) 283836 2498.65 2690.34 2150.5 2049.2 2219.36 2352.24

2084



J. Applied Sci., 13 (11): 2082-2086, 2013

0.05 — Tttt
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o o SvMfore(li)
0.046 > PCA-GSCV-SVM for & (li)

5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20
Pre-toque Nm

Fig. 2: A cantilever with bolt joints
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Fig. 3: Comparison of regression models for e, (T) and
predictions for e, (A)

with bolt joints. The rotation flexible parameter €, is
treated as an uncertain parameter, which 1s identified
according to modal tests. Nine sets modal tests for nine
pre-toques (5Nm, 6Nm, 7Nm, 8Nm, 9Nm, 10Nm, 12Nm,
16Nm, 20Nm) are carried out. The experunents are
designed from SNm to 20Nm for five cycles and both bolts
and gaskets are replaced for each cycle, m which
experiments are repeated five times for each pre-toque.
There are 25 experimental data for each order nature
frequency with every pre-toque.

The relation of the first three order nature frequencies
with the rotation flexible parameter is built as follows
(Xiao and Chen, 2005):

g, =1—04028%, —0.0908A, +0.0231A, &)

Given the first three nature frequencies identified by
modal tests, the rotation flexible parameter ¢, is achieved
with Eq. 9, which 1s the regression aim. The means of A/
(for i=5Nm, 9Nm, 20Nm, j = 1, 2, 3) and the corresponding
¢', are used as the test set and the remaining six groups of
A, with €, are used as the traimng set. The comparison of
the predicted values for SVM,

PCA-SVM, GSCV-3VM and PCA-GSCV-SVM algorithms
are shown m Table 3. As seen from 1t, the three
predictions represent two extrapolations and one
interpolation and the effects of interpolation for all of the
algorithms are very well, while the effects of
extrapolations are different a lot for different algorithms.
For the largest pre-toque with 20Nm, all algorithms
predictions are approximate with the calculated value as
Eq. 9, while the effect of GSCV-SVM is the best. For the
smallest pre-toque with SNm, none algorithms can predict
approximatelyexcept GSCV-SVM. Furthermore, Six groups
of T, (for T, = 6Nm, 7Nm, 8Nm, 10Nm, 12Nm, 16Nm) with
the correspending €', are used as training set and the
regression models £, (T) built by GSCV-SVM and SVM
respectively are shown in Fig. 3, in which predicted values
for SNm, 9Nm and 20Nm are also drawn as scatter points
with different marks.

Comparing with Eq. &, the effects of feature selection
before SVM model building are totally different, it 1s
because that the relation of output with coherent input
variables is nonlinear in Eq. 8, which is the most effective
factor for regression, while the relation of output and
mput variables 18 linear in Eq. 9 and the uncertamties in
experimental data is another important factor, which
means the model is identified by input and output both
with uncertainties.

CONCLUSIONS

In this study, PCA 1s applied to SVM for feature
selecion and GSCV 1s applied to SVM for model
parameters optimization. Both of them improve the
prediction ability of SVM for regression. The numerical
and engineering examples show that feature selection as
mput data fore treatment more fits for nonlinear coherent
multivariable system identification, while SVM model
parameters optimization more fits for complex system with
kinds of uncertainties using limited data and it has effect
on the former situation too. Furthermore, although all of
the algorithms presented here are good enough for
interpolation, model built by GSCV-SVM has better
extrapolation ability than other algorithms. Future work
needs to explore ways of reducing the large computation
cost in model parameters optimization because the high
generalization performance of GSCV is obtained at the
cost of a large amount of computation time.
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