——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 13 (12): 2217-2224, 2013
ISSN 1812-5654 / DOL 10.3923/jas.2013.2217-2224
© 2013 Asian Network for Scientific Information

Research on the Improvement of Software Design Pattern Based on Substance-field
Analysis and Standard Solutions of TRIZ

LI Munan
'Schecel of Business Administration, South China University of Technology,
Guangzhou, 510641, P.R. China
*Guangdong Key Lab of Innovation Methods and Decision Management, South China University of Technelogy,
Guangzhou, 510641, P.R. China

Abstract: The accuracy descriptions and definitions of requirements and contradictions in the engineering
projects and the analysis and modeling of resource conflicting are the common challenges and important issues
to us. Aimed to the problems and the contradictions in the process of the software design, this study combined
the model of substance-field and the analysis methods related with the traditional methodologies of software
design. We tried to find a novel approach of representation and description for the requirements of the software
engineering and the strategies of improvement on the design methods and the patterns. Tn the last section of
this study, we analyzed the improvement of design pattern of the CAT software based on the MVC pattern.
Finally, we can argue that the methods of problems modeling and the improved strategies of the design pattern
combined with the TRIZ are meaningful and valuable for other engineering science and the research domain

of system science.

Key words: TRIZ, substance-field, analysis, design patter of software

INTRODUCTION

Staring from requirements engineering, software
engineering involves multiple stages or parts, such as
architecture design, detailed design, coding, testing and
deploying and also it needs lots of team commumcation,
coordmation and task scheduling, progress momtoring,
quality assurance, ete. Software design patterns are put
forward upon the summary of mature and successful
design experiences in software designing process,
mtending to integrate the experiences with the design
concepts and methods of code reuse and system
maintenance (Gamma et al., 1994; Yao et al., 2003).
Successful design patterns have played certain
promoting roles i developing software engineering
theory and cutting cost i software development and
maintenance. But because of the lack of intuitien, it 1s
difficult to be understood and mastered by most of the
common designers (Gamma et al., 1994).

In a large software system of commercial customer,
the system quality i1s not only to meet the demand of
function, but the need of such non-functional points
as: Maintainability, concurrency, safety etc., should also
be satisfied. Give a very simple example: Put forward
very high requirements for mformation security in
e-government systems, the design of information
encryption mechanism will improve the safety of the
software, but will reduce the processing performance of

the system. Kluender (2011) believes that the current
existence of conflict problem between the functional
design of typical and non functional quality index in the
design of large software systems. With the current
software system more and more complex, various quality
indexes of the mcreasingly high demand, the lack of the
effective theory framework and tools to solve these
conflicts increasingly prominent (Wang et al., 2011).
Perhaps, for the simple and intuitive, TRIZ theory and
method gradually began to get more and more attention
and was introduced into the more and more engineering
field besides the design of industrial products and the
patent analysis (liang ef af, 2011, Prickett and
Aparicio, 2012; Blackbum ef al., 2012). Wang et al. (2011)
put forward a solution of trusted software based on the
combination between QFD and TRIZ from the view of
technical conflict during software development.

Besides, there are not enough effective guiding
ideology and methods for the evolution strategy and
direction of design pattern itself. At present, there are
more than twenty kinds of software design patterns, but
the design pattern itself 1s less mtmitive, difficult to be
most common design staff fully understand and master. In
addition, the evolution strategy and direction of design
model also lack the guidelines and effective method
(Gao and Niu, 2011; Ma et al., 2005). For example: At
present, many software systems are proclaimed using

2217

J. Applied Sci., 13 (12): 2217-2224, 2013

MVC pattern in the design stage. But in practical
applications, the problems of poor code maintainability
and low code reuse still exist, because developers usually
apply fixed open source programming framework without
understanding the nature of MVC. And, as a result,
the actual code and modules of the software cammot fully
comply with the MVC design concept (Cao and Hu, 2005;
L1 and Cui, 2003).

The substance-field analysis and standard solutions
of TRIZ provide a more intuitive way to describe and
solve problems, with certain reference significance in
unproving software design patterns and design process
(Tan, 2004; Liu et al., 2009). Contradictions and conflicts
between environmental constraints and user requirements
should be taken into consideration when choosing
software design patterns and design process.

SOFTWARE DESIGN AND SUBSTANCE-FIELD
ANALYSIS

Actually, there are many analogies and similarities
between software designing methods and industrial
products. Environment constraints are challenges for both
industrial products design and software design
(Bonnardel, 2000, Suwa et al., 2000). The unpredictable
design requirements, as well as the user's requirements of
visualization are important means to clarify the user's
design requirements further (Woo et al, 2005).
Huang et al (2009) put forward a novel knowledge
network architecture model based on TRIZ. Zou et al.
(2009) put forward a method to solve the problem of
coupled design based on TRIZ.

In traditional software designing process, people
mainly use words and UML (Unified Modeling Language)
to describe problems and requirements. And because the
same word probably means different to different people,
the most common communicating way is UML. TUML is an
object-oriented language for application systems
modeling. Though the twelve diagrams defined in UML is
in the same level, the best practical experience 13 used to
take the fist-class legend combination as priority, in which
structure diagram 1s equal to <class diagram, object
diagram, component diagram, deployment diagram=>. In
consequence, 1t 18 nevitably that business objects have
to be defined prior to transactions in business process
defined in UML, which a narrow appreach 1s leading to
not-fully satisfied business analysis and business
process reengineering, as well as potential problems in
coping with risk brought by changes in demand. The
current UML 158 too complex and not mtuitive enough and
is lack of a concise profile, some semantic definition is not
precise enough, even contains two meanings and the lack
of mechanism of domain modeling requirements

(Shao et al., 2003). Yao and Wang (2010) also suggested
a lack of demand for conflict without ambiguity solution
in the traditional UML.

As one of the important problem resolution tools,
substance-field analysis is suitable for constructing
problems of complex requirements to substance-field
model related to the existing technology systems and
then, by combining with standard solutions, the best
solution can be found. TRIZ theory and method is also
becoming the tool and object of mtegration and
combination in many fields (Martin, 2005). Substance-field
analysis transforms the techmcal system to the
combination of substance and field and the modeling
result is intuitive and easy to understand.

Description of substance-field model and software design
problems: Substance-field Model of TRIZ holds the
viewpomnts that: (1) All of the functions can be broken
down into three basic elements, (2) An existing function
must be structured by three basic elements, (3) A function
will come out from three organically interacted basic
elements (Tan, 2004; Zhu et al, 2010). As shown in
Fig. 1, the most basic Substance-field Model is composed
by two substances and one field and more complex
models can be structured by adding other substances,
fields in series and parallel.

Substance-field Model provides a more intuitive way
to model requirement problems in software engineering,
for example: Any of the smallest functional design units
can be a triple like:

F_umit=<Requestor, Service/Field, Responder> (1)

In Eqg. 1, Requestor and Responder are the two basic
substances, while Service 1s the basic field. For the
problem description of software design, the smallest
function unit should contain at least one
“requester agent”-Requestor and at least one “responder
agent”-Responder and the realization of this function is a
“service field”-Service. For example, the simple finction

Fig. 1: Basic substance-field model (three elements)

2218

J. Applied Sci., 13 (12): 2217-2224, 2013

J Action_recognize_service L

Key board

Translate_service

User p %

Fig. 2: Adding field in coping with requirement change

Action_recognize service

“keyboard input” can be described as <user, type and
capture services, keyboard>, as shown in the following
equation:

Keyboard Input=<User, Field, Keyboard> (2)

If the requirements need future changes, like action
recogmition service only capture the typing exactly, but
what if there is a need for electrical pulse signal
comversion service, such as encoding conversion
between electrical pulse and Chinese words. And here,
another field needs to be introduced to meet the
requirements, as shown in Fig. 2.

Substance-field model transformation and design
patterns of software architecture: There are five
principles in substance-field model transformation
(Tan, 2004; Liu et «l, 2009), which are important
references for problem solving, which also can be used to
unprove the software design process and design pattern.

Principle 1: Introducing the missing elements to form a
complete substance-field model.

Figure 1 1s such an example mtroducing missing
elements, but it is just an abridged general view, in a more
real circumstance, a “Monitor”- substance should be
mtroduced to display the output of keyboard typing, as
shown in Fig. 3.

Fig. 3: Introducing “Monitor” to improve substance-field
model

Runsupportserwcel | Run._support_service

S

Fig. 4. Functon and performance extension of software
systems by adding hardware platform

Principle 2: To extend the existing substance-field
model by commecting to substances able to produce
fields, to enhance the effect of the

system.

current

Such extension requirement 1s relatively common in
the software design process, such as, extending software
functions to meet the evolving needs of enterprise
informatization; adding and updating servers and network
equipment to improve system performance and stability.

The substance-field model for
performance extension of software systems is shown in
Fig. 4.

function and

Principle 3: For measurement problems, two fields can be
produced by extending, one is input and the other is
output.

Testing should be taken into consideration m the
software designing process, such as test goal, test plan
and test cases. The principle provides a way to test those
problems relatively difficult.
Additionally, as the complexity of software design 1s
directly related to the workload and cost of the entire
software project, how to exactly measure and control the

software which are

cost of the entire software development process 1s a
problem which should be thought over in the architecture
design stage.

2219

J. Applied Sci., 13 (12): 2217-2224, 2013

Field of service

Controller

Fig. 5: Substance-field model designed in MVC pattern

Principle 4: Introducing the third element is the most
effective way to elimmate a harmful, unnecessary and
unwanted substance or field.

In the process of software design, this principle can
be understood as the most effective way to eliminate code
risk or system security vulnerability and other hidden
dangers is introducing a third party, sophisticated
encryption software and decryption software and code
vulnerability monitoring software. For example, TCP
protocol and the 1475 port are used in software system. In
order to prevent the 1475 port from being used by
hackers, encryption and decryption operations can
be done to the TCP protocol packet communicating by
this port and thus eliminate safety hazards which may be
existing in the system.

Principle 5: If field F2 1s a necessary output of the
system, F1 is a necessary mnput and then add a substance
as the intermediary of F1-F2.

The ntermediary principle of mput-output can be
reflected to classical MV C software design pattern. The
early traditional software design pattemns generally
present the data and results to users based on the user’ss
access and demand. The most serious problem caused by
this kind of patterns is that business logic changes may
lead to huge changes in the code, eventually resulting in
system collapse without maintainability. As the most
popular design pattern, MVC patterns manage and
monitor user access and view of calculating results
effectively using an mtermediary (a controller) and
improve the ability to handle concurrent access to the
system and effective management of limited resources of
database connection pool, which is the biggest advantage
of MV C. Substance-field model designed in MVC pattermn
is shown in Fig. 5.

CORRESPONDING ANALYSIS OF COMMON
OBJECTS-FIELD MODEL AND SOFTWARE DESIGN
PATTERNS

Incomplete substance-field model and singleton design
pattern: Incomplete substance-field model means that in
the model one or two elements are missing and the
requirements cannot be realized. Singleton pattern
provides unique access point for object-orient application
software, with the greatest advantage of sharing concept
for the designing and developing team. Tt is difficult for a
Singleton object class to be sub classed, only if the father
class has not been instantiated. In addition, in the
developing language and environment of C# (.net), the
connection object of database — Connection cannot be
designed as a Singleton object, because if Commection 1s
called and shared by application software, there will be
exception of commection overflow. And there are lots of
problems of Singleton pattern for the common databases.
That’s why other means or mechamsms should be
introduced to make up this defect when using Singleton
Pattern.

Disadvantage, incomplete substance-field model and
MVC design pattern: With loosely coupled design
philosophy, MV C design is to solve the system scalability
and maintainability issues, using a relatively independent
controller module to control user access and results view.
Traditional software systems usually base on C/S or B/S
architecture, causing harmful problems, such as
occupation of large amounts of data connection
resources, low efficiency of system operation, poor
readability of code and low maintainability. MVC can
partially response or solve the problems of traditional
two-tter structure through loosely coupled design
philosophy.

Insufficient substance-field model and fa¢ade design
pattern: Tnsufficient Substance-field model is such kind of
models with complete elements, but without enough
functions to meet the user’s needs. Fagade pattern
provides an easy public access to deal with complex
subsystems, without reducing functions of subsystems.
Fagade eliminates the complex of subsystem, direct links
between customers and subsystems and links between
subsystems. Each of the subsystems has its own Fagade
pattern, by which they get access to other subsystems.
The disadvantages of Fagade are liniting the personalized
needs of customers and reducing the system flexible,
which will lead to the conflicts between users and
software in practical operations. Such conflicts seldom
can be resolved under Fagade pattern, which 1s typical
problem of lacking effectiveness. And the improving

2220

J. Applied Sci., 13 (12): 2217-2224, 2013

Service field of access

Facade
Personality | 4Insufficient

Fig. 6: Introduce personalized service field and specified
page technology to meet users” needs

method for this problem which is based on insufficient
Substance-field model 1s shown as below m Fig. 6.

In the traditional Fagade pattern, add a service field
“user friendly mterface” to provide a friendlier user
perception and interaction, for example, add Flash element
or take Ajex technology mto the original static pages
(Tsp, Aspx, Html, etc.,) to improve the interactive
performance and personalization of the system mterfaces
under develop environment of Let, the frame of
SilverLight also can be considered to improve the
interactivity and flexibility of interfaces without
destroying the original design model.

STANDARD SOLUTIONS APPLICATION IN
SOFTWARE DESIGN PATTERNS

In TRIZ, there are 76 standard solutions in
correspondence with the results of substance-field
analysis, which are standards solutions for invention in
essence, not especially for problems in software design
process. But there are no big differences in basic
application processes and the process of software design
is the process solving the conflicts between user’s needs
and resources (constraints of developing cost, tools,
hardware and networks and interfaces, etc.,).

In Fig. 7, the numerical codes represent the codes of
TRIZ material-field model standard solutions
correspendmngly (Tan, 2004). For example, 1.1.1 means the
solution is “transferring to complete substance-field
model from uncompleted one” and 1.1.2 means
“establishing internal synthetic substance-field model by
mtroducing appendages to the
etc.

substance mternally”,

INSTANCE: DESIGN OF CAI SOFTWARE BASED
ONMVC MODEL

Computer Aided Immovation-CAI i1s a ligh-tech
integrating innovating problem-solving ways, modern
design method, semantic processing and computer
software technology, which can be presented as the
following triple (Yang et al., 2009, Lan et al., 2008):

CAI = <annovation theory, Innovation
technology, Information technology= (3

In Eq. 3, the innovation theory mainly is TRIZ;
Innovation technology includes problem analyzing,
semantic processing, knowledge base, patent query and
program evaluation, etc., and IT means the technologies
related to analyzing, designing, coding, testing and
deploying in the CAI software implementation. MVC is
one of the currently mainstream software design models,
which has been widely promoted and used, like SSH
Framework (Struct-Spring-Hibernate) based on Java and
“y1i1” or “codeigniter” developed using PHP. Traditional
MVC model takes loose coupling between modules into
consideration and puts emphasis on the independence of
user request to respond.

CAI software 1s often sorted into mnovative method
platform and imovative knowledge platform. Suppose
that it refers to Pro/Inovator (Yang et al, 2009) in
requirements analysis. Pro/Tnnovator is one kind of CAT
software belonging to American TWINT Company, which
is one of the comparatively mature software products in
CAT technology application and research and the famous
CAI software domestic 1s Invention Tool, developed by
Hebei University of Technology (Yang et ad., 2009). There
are mamly ten modules or functions in Pro/mnovator,
including project/module navigation, technology systems
analysis, problem decomposition, solutions, innovation
principles, patent search, patents generation, program
evaluation, report generation and knowledge base editor.
Suppose that the system takes MVC model based on PHP,
like Framework codeigniter (similar to Frameworle SSH
based on Java) to design CAI software, then the MVC
model is shown in Fig. 8.

As MVC model shown in Fig. 8, each fimction module
1s separated mto three parts, controller, model and view.
Take problem decomposition and patent query in the CAL
software requirements for example, supposing these two
modules are designed as:

Problem Decompose=<Problem Decompose_controller,
Problem Decompose Model, Problem Decompose
View:>,

Patent Query = <Patent Query Controller,
Query Model, Patent Query View>

Patent

2221

J. Applied Sci., 13 (12): 2217-2224, 2013

Description of
requirment

!

Component analysis

Resource analysis

Function analysis

Requirements analysis

-

e ———————————— — — ————,

su-field model ~_#

Transition to super or

micro system

Test and
measurement

&—I_Jv ¥ 2

L 4

Insufficient

Imperfect

Prolongatio

effect

model

-

—

3,1.1-3,1.3

3,14-3,15
3,21

¥

v

1,1.1-1,1.5

2,1.2-2, 1.2
2,2.1-2,22
2,24-2,2.6
2,3.1-2.3.3

4,1.14,13
421424
45.14,52

5.1,1.2-5.1,17
512
5,2.1-5,23
5,4,1-5,42

-.__________£_____________.’

Fig. 7: Software requirements analysis and design based on su-field model and standard solutions of TRIZ

MySql (DB)

Dispatcher

Routes
v

Web server D

Browser

Fig. 8: Software designing based on MVC

When “Inventive problem decomposition” is undertaken,
the Problem Decompose Controller is called first, then

Busmess Model 1s visited by Controller, then Business
Model interacts with data and then feedback is shown the
user by view and controller through rendering. In this
design model, the functional modules are separated with
loose coupling. When it 15 required to embed
“Patent Query Module” in “Problem Decompose
Module”, the details of “Patent Query Module”
(Model and view) «can be copied into
Problem Decompose, which is not economic with low
maintenance in code and the code mamtenance later will
be extremely complicated and costly if all modules in need
of embedded Patent Query in this way. And this indicts
that horizontal communication capacity between modules
is weak for traditional MVC Model, lacking interaction and
communication effect between modules. Using the design
process and model in Fig. 3, the standard solution can be
found, as in Table 1.

According to the standard solutions 2.1.1,2.2.4, 2.2.6
i Table 1 and then we can get the wnproved
substance-field analysis is shown in Fig. 8, by introducing
view-driven TextPattern Framework on the basis of
codeigniter framework of traditional MVC model and
enhancing interact and communicate effect between

2222

J. Applied Sci., 13 (12): 2217-2224, 2013

Table 1: Tmprovements of MVC software design model based on non-efficient standard solutions

Narmne of standard solutions Sub-solutions

Corresponding Improvements

2.1 Transfer to complex
substance-field model

2.1.2 Introduce field and transfer to parallel

substance-field model

2.2, Enhanced substance-field model

2.2.2 Enhance the transfer of tool, type of substance,

to microscopic control

2.2.4 Tmprove the dynarmic of substance

2.2.5 Add new field
2.2.6 Add new substance

2.3 Use frequency to realize enhanced
substance-field model coordinately

2.1.1 Introduce substance and transfer to
tandem substance-field model

2.2.1 Use field easier to control as an alternative

Introduce new design pattern or
developing framework to make up
horizontal interaction

Introduce new interface interactive
technology and service-field, like
Ajax, Silver Light to drag and
layout the interfaces flexibly
Persuade client to give up the
requirements of embedded modules
Give up MVC model, design
functions at a smaller particle size,
turn to view-driven models to meet
user requirements, but with the
potential risk of tight coupling
Introduce lay ering concept,
breakdown function particle size,
introduce view-driven

Introduce new technology and
interface interactive service

Add new design framework, modify
the original MVC design

2.3.1 Match the frequency of the field and substance N/A
in the mode _jor don’t match_j

2.3.2. Match the frequency of the field and field in the N/A

mode _jor don’t match_j
2.3.3. use periodic principle

N/A

Field of interaction

Personalized
fequirments Insufficient

Field of interaction | | Field of interaction

. Text
Personalized\ — Nommal !
é

Fig. 9 Improvement of MVC design pattern of CAI
software

different modules without lowing the loose coupling of
the MVC model.

In Fig. 9, an improvement strategy is given,
based on view-driven combing MVC, which is not
the unique solution and in fact, MVC model can be
altered to combing with

view-driven model

sampling-factory model, or hierarchical MVC, namely
HMVC etc.

CONCLUSION

Currently, there are very few fruits of research
combining TRIZ and software engineering and software
design pattern 1s an evolving system itself. In the study,
a relatively new solving and improving solutions are
discussed about software design pattern from the
perspective of substance-field model and standard
solutions of TRIZ. Compared with the traditional software
engineering modeling languages, the substance-field of
TRIZ is in advantage, more intuitive and easier to
understand. Besides, substance-field analysis emphases
and breaking down problems and
of traditional
process modeling software, like UML, in describing

on describing
conflicts, making up disadvantages
requirement problems and resource conflicts. The
standard solutions, based on substance-field, expand
software design ideas and requirement problem solving
strategy greatly. But, the combination of TRIZ theory and
methods with software engineering is quiet a new
study area and the correspondence of solving
strategies for TRIZ problems and solving methods for
software design problems needs further research. Because
of the limited professional ability and knowledge field,
there may be some controversies about the concepts and

2223

J. Applied Sci., 13 (12): 2217-2224, 2013

models, but as a positive attempt, this research is
hopefully to be the basis for further study.

ACKNOWLEDGMENT

This study is partly sponsored by the Major Project
of China National Sccial Science Fund (No. 11 and
ZD154), Open Research Funds of Guangdong Province
Key Laboratory (No. 2011A06090100101B) and
Fundamental Research Funds for the
Universities (No. 2013XMS03).

National

REFERENCES

Blackbum, T.D., T.A. Mazzuchi and 3. Sarkam, 2012.
Using a TRIZ framework for systems engmeering
trade studies. Syst. Eng., 15: 355-367.

Bomnardel, N., 2000. Towards understanding and
supporting creativity n design: Analogies in a
constrained cognitive
Knowledge-Based Syst., 13: 505-513.

Cao, C.P. and D.M. Hu, 2005. Design of Web test system
on MVC design pattern. J. Umv. Shanghai Sci.
Technol., 27: 459-462.

Gamma, E., R. Helm, R. Johnson and J. Vlissides, 1994.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Boston,
USA.

Gao, S. and 7. Y. Niw, 2011. Practice of agile principles and
design patterns. J. Comput. Appl., 31: 147-152.
Huang, S.Q., F.Y. Xu and F. Dai, 2009. Integrated
architecture for TRIZ based on knowledge network
and its key technologies. I. Zhejiang Univ. (Eng.

Sci.,), 43: 2244-2249.

Tiang, J.C P. Sunand A.J. Shie, 2011. Six cognitive gaps
by using TRIZ and tools for service system design.
Expert Syst. Appl., 38: 14751-1475%.

Kluender, D., 2011. TRIZ for software architecture.
Procedia Eng., 9: 708-713.

Lan, F., B. Qin and Y.J. Liang, 2008 The product
innovation tool-research on CAT technology.
Equipments Manufacturing Technol., 4: 108-111.

L1, Y. and D. Cw, 2005. Improvement and application of
MVC design patterns. Comput. Eng., 31: 95-97.

environiment.

Liu, ¥X.7., Y.I. Ii and G.N. Qi, 2009. Application of
systematic design approach based on theory of
wwventive problem solving. J. Zhejiang Univ.
(Eng. Seci.,), 43: 2244-2249,

Ma, Z., Y. Zhou and S.B. Xie, 2005. Research and
applications of MVC design pattern in NMS. J. UEST
China, 34: 638-641.

Martin, G.M., 2005. How combinations of TRIZ tools are
used in companies-result of a cluster analysis. R D
Manage., 35: 285-296.

Prickett, P. and I. Aparicio, 2012. The development of a
modified TRIZ techmcal system ontology. Comput.
Ind., 63: 252-264.

Shao, W.Z., Y.B. Jiang and 7Z.Y. Ma, 2003. The present
problems and roadmap of UML. J. Comput. Res. Dev .,
40: 509-516.

Suwa, M., J. Gero and T. Purcll, 2000. Unexpected
discoveries and s-inventions of design requirements.
Design Stud., 21: 539-567.

Tan, R., 2004. Theory of Inventive Problem Solving.
Science Press, Beijing.

Wang, S.H., D. Samadhiya and D. Chen, 2011. Software
development and quality problems and solutions by
TRIZ. Procedia Comput. Sci., 5: 730-735.

Woo, 1.Y., SM. Bae and S.C. Park, 2005. Visualization
method for customer targeting using customer map.
Expert Syst. Appl., 28: 763-772.

Yang, B., Y. Tian, R. Tan and J. Ma, 2009. Research
and development of CAI system based on
standard solutions. China Mechanical Eng.,
20: 704-708.

Yao, S., H. Guo and T. Wang, 2003. Description of
object-oriented software architecture using design
patterns. J. South China Umniv. Technol. (Nat. Sci.
Edn,), 31: 15-22.

Yao, Q.Z. and I. Wang, 2010. Software formalization
requirements analysis and verification based on
UML. Comput. Eng., 36: 30-33.

Zhu, HF .| Y. Liand W.Q. L1, 2010. Based on the idealized
design of substance-field model. Machinery Design
Manufacture, 12: 6-8.

Zow, F, Z. He and AB. Yu 2009. Research and
application of the method for uncoupling design by
TRIZ.J. Harbin Inst. Technol., 41: 265-268.

2224

	JAS.pdf
	Page 1

