——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 13 (13): 2372-2377, 2013
ISSN 1812-5654 / DOL: 10.3923/ja8.2013.2372.2377
© 2013 Asian Network for Scientific Information

Algorithm Based on Data Flow Criteria for Automatic Test Data Generation

Jifeng Chen and Hao Peng
School of information science and engineering, Hunan International Economics University,
Changsha, 410205, China

Abstract: By analyzing the theory of the Definition-Use (DU) test for data flow testing, an algorithm based on
data flow criteria for automatic test data generation was presented n this study. The ALL-DU-PATHS data flow
criterion was introduced and the Warshall method was used to check the feasibility and testability of DU pair
in the algorithm. An automatic test data generation approach based on test sequence (path) was given after
selecting test sequence (path) on DU pair coverage. Finally, the algorithm was checked by example and
experiment. Theoretical analysis and test results show that the algorithm can effectively check the DU pair’s
feasibility and testability of the program and automatically generate test data for the test sequence (path) to
cover the DU pairs, or get the conclusion which could not found the effective program’s input to cover the DUJ

pairs.

Key words: Data flow criteria, DU pair, predicate function, test data

INTRODUCTION

Software testing 1s a process for finding errors of
program. During the process, the program is executed with
a group of test data which is detailedly designed as input
according to the software specification and the mternal
structure of program. Software testing can be divided into
structural testing (Alshraideh et al., 2010, Diaz et al.,
2008) and functional testing (Lijun et al., 2011; Nie and
Leung, 2011) on the base of test data design. The
adequacy of the software structural test is judged by the
criterion based on whether some parts of software have
been tested. In recent years, a lot of structural testing
criteria are presented, such as statement coverage (Tikir
and Hollingsworth, 2005, Tac et al, 2006), branch
coverage (Alshraideh et al, 2011; Kiran et al., 2010) and
path coverage (Junko et al, 2009, Gong et al., 2011).
Rapps-Weyuker defined a set of data flow test guidelines
for an 1deal programming language (Rapps and Weyulker,
1985). Data flow testing is a structural test method which
uses the relationship among the flow data in the program
to guide the tester selected test cases. The basic idea 1s:
the definition of a variable can affect the value of another
variable or the choice of the path through the further
using and defining. Therefore, some test data can be
chosen to make an execution for the program in
accordance with a defimition-use path of certain variables.
The result is verified whether it is consistent with
expectations. Thus, the errors of program could be
discovered.

The generation of test sequences based on data flow
was analyzed in (Liu et al., 2005). Based on it, the test
sequence generation method was improved m this study
and a new method of automatic generation of test data
was proposed and verified by examples.

BASIC KNOWLEDGE

Tn order to better illustrate the algorithm’s design idea
and to maintain the integrity of the article, related
knowledge 1s repeated as follows:

The theory of the definition-use test based on data flow:
Data flow testing is the form of structural testing which
concermns the variable value of the receiving points and
the use{or reference) points . Most of the formal worlks for
definition- use test theory of data flow are completed in
the early 80’s of the 20th century (Liu et al, 2005).
Suppose process P followed a structured program design
specifications, V 1s its set of program variables, P 1s the
set of all paths in the PATH (P), P picture shows the
program G (P), according to the definition of data flow
testing/use test theory, has the following definition
{(Jorgensen, 2003).

Definition 1: Node neG (P) is the definition of the variable
node ve V, denoted DEF (v, n}, if and only if the value of
defined by the statement fragment of the
corresponding node n.

v ois

Corresponding Author:
Changsha, 410205, China

Jifeng Chen, School of information science and engineering, Hunan International Economics University,

2372

J. Applied Sci., 13 (13): 2372-2377, 2013

Enter the statement, assignment statements, loop
control staterments and program calls, are the examples of
the definition of node statement. If thus statement 1s the
unplementation of the corresponding node, then the
variable associated with the contents of the storage unit
will change.

Definition 2: Node neG (P) is the use of the variable node
veV, denoted by USE (v, n), if and only if the value of v is
used by the statement fragment of the corresponding
node n.

Output. statements, assignment statements,
conditional statements, loop control statements and
program calls, are the examples of using the nodes m the
statement. If this statement is the implementation of the
corresponding node, then the variable associated with the
contents of the storage umt will remam unchanged.

Definition 3: If a variable veV is defined in the statement
m (DEF (v, m)) and used in the statement n(USE (v, n)),
then the statement said the statement m and n is called as
a definition-use pairs of the variable v, referred to DU
pairs (denoted as <v, m, n=).

Definition 4: For the definition-use path of variable v
(denoted as DU-PATH) 1s the path in PATH (P), there 1s
the definition node DEF (v, m) and the use node USE (v,
n) for some veV, making m and n 15 the wmutial and final
nodes m the path.

Definition 5: The defimtion-clear path of variable v
(denoted as DC-PATH) is the path in PATH (P) which has
the imtial node DEF (v, m) and the final node USE (v, n} to
make that no other nodes are the definition nodes of v in
the path.

Definition-use path and definition-clear path give a
description of the source statements date flow on the
cross-path value from the defined point to the used point.

Definition 6: If there 1s a DC-PATH m a DU pair, then the
DU pair 1s to be tested, otherwise, 1t 1s not.

The test coverage standard on the definition-use path
of data flow: The standard of Rapps-Weyuker based on
data flow analysis (Liu et al, 2005) mainly includes
ALL-DU-PATHS,ALL-USES,ALL-C-USES, ALL-P-USES,
ALL-DEFS, ALL-EDGES, ALL-NODES. The containment
relationship is shown in Fig. 1.

In this case, it is possible for a more detailed structure
testing between the full path indicators (impossible
to achieve) and all sides indicators which are generally

All-paths
All-DU-paths

All-uses

4

All-C-uses/some-P-uses

Ny

All-C-uses

All-P-uses/some-C-uses

All-DEFS All-P-uses

Fig. 1: The containment relationship among the data flow
testing criteria

considered the lowest. The test of defimition-use can
provide a rigorous and systematic method on checking
points that defect may occur.

When choosing a test standard, there must be some
kind of trade-offs. The stronger selecting standard is, the
easler detecting bug in the program is. At the same time,
the cost of testing will also be lugher. On the other hand,
the test cases will be decreased if the weaker standards
are used and the generating costs are lower. We use the
second strongest standard ATLL-DU-PATHS as the
criterion for algorithm designing, i.e., the test data that is
generated should be able to cover the DU pair owned by
each variable. As the variable value is optional, it is not
guaranteed that these DU pairs can detect all the existent
bugs (Jianguo, 2001).

ALGORITHM DESIGN
The main algorithm’s idea 1s as follows:

Analyzing the program to determine DU pairs: For the
programs
languages, the program flow graph is a directed graph,
where the nodes in it are either the entire statement or a
part of the statement and the edges express the control

written by the imperative programming

flow. Therefore, we can use graph theory to analyze the
program to determine the DU paur.

Step 1: By analyzing the program under test, we

determine the nodes and variables and the
the type
(definition node or use node) that each node
relative to each variable. According to the
analysis of the relationship between the nodes
information, construct program flow graph, find
the current adjacency matrix and determine the

relationship between each node,

DU pairs owned by each variable in the program
according to the current adjacency matrix and the
node type that each node relative to each variable

2373

J. Applied Sci., 13 (13): 2372-2377, 2013

Checking the feasibility and testability on DU pairs:

Step 2: Determine the accessibility matrix of program
graph. Using the graph theory (Mingzhe, 2010)
and the Warshall algorithm, the accessibility
matrix P can be directly obtained from the
adjacency matrix A. As follows (where j, 1,
respectively stand for the row and column of
matrix, n is the number of nodes in the program

graph):

¢ Setanewmatrix P: = A

+ Seti=1

e Forall j, if P, i)=1while k =1, 2., n then
PO.k:=P(,keP (1, k)

e 1=1+]

¢« Ifi=n, gotostep 3, otherwise stop

Step 3: Check the feasibility of all DU pairs(the first and
last nodes of DU pairs are accessible) according
to the accessibility matrix, remove the infeasible
DU pairs (the first and last nodes of DU pairs are
maccessible)

Step 4: In accordance with defimtion 6, check the
testability of all DU pairs, remove the DU pairs
which are not testable (i.e., the DU pairs that do
not contain the DC-PATH): For one of the DU
pairs, after removing the defimtion nodes of the
same variables except corresponding to the DU
pairs, we can get a new adjacency matrix and
calculate the accessibility matrix of the adjacency
matrix. If the DU pair 1s still viable in the new
adjacency matrix, the DU pair can be tested,
otherwise deleted

Step 5: Not considering the variable name, delete the
DU pair that the defimtion-use node 1s the same
and repeated and get the final DU pair’s set
DU |i=1,2...n}

Optimizing and selecting the test sequences (paths)
which cover the DU pairs: Suppose that all DU pairs are
the set {DUili = 1,2.., n} and the selected test sequence
(path) set1is P={P;|7=1,2 ... m}:

Step 6: Choose a path P, which is through the DU, and
check P, whether it is also through DU,. Tf it is
true, then P = {P}; otherwise, elect a path P,
through DU, and check P, whether it 1s also
through DU, Tf it is true, then P = {P;}, otherwise,
P={P, Py}

Step 7: When 1= k, j =1{(k=1,1=1), check the path
set P = {P[j = 1, 2.... I} whether there is a path

through the DU, If true, P = {P|j = 1, 2,..., 1};
otherwise, elect another path P,., through the DU,
and check whether Py, is also through {DUjJi =1,
2..... k-1}. Iftrue, P = {P.,}; otherwise, P = {P|; =1,
2.1 11}

Since, all the DU pairs inset {DU1=1, 2,..., n} are
feasible and testable, so there must be a path set which
covers all the DU pairs. Repeat step 6, we can find the test
sequence {path) P = {P|j =1, 2,..., m} which covers the set
DU =1,2,...,n}.

Generating test data for the selected test sequence:
Inspect the various branch predicates on chosen path, if
the various branch predicates are all the linear expression,
then carry out step 8, otherwise carry out step 9:

Step 8: Using branch predicate function on the path to
construct linear constraint system on the input
variables directly and set up the input variable
linear equations, solve the mput variables
value 1. The value of input variables shall be the
test data. If the restramnt system has no solution,
then the path is not accessible

Step 9: Choosing a set of input variable values in given
domain to check each branch predicate on the
path, the linear arithmetic representation of
nonlinear predicate functions on current input 1is
computed The linear constraint system on the
input variables is constructed with the linear
predicate functions on the path and the linear
arithmetic representations obtained previously.
Further, the linear equation system on the input
variables is established and solved to get the
values of mput variables. Hence, a set of new
input is obtained. If the set of new input can’t
traverse the given path vyet, then, the process
above 1s repeated till the desired outcome 1s
obtained or the number of iterative upper limit is
achieved(the path 1s infeasible to a large extent)

If there are some infeasible (or nfeasible m large
extent) paths in path set P= {Pj =1, 2,..., m}, generate a
new set of DU pairs using the DU pairs which are not
covered by the feasible paths m set P . Choosing another
path except for theset P= {P[j = 1, 2,..., m}, repeat 3.3 and
3.4. If the DU pawrs which are not passed still exist and
there is no new path that can be selected, then it is true
that there is not any test data which can be generate for
covering the DU pairs. The algorithm ends.

2374

J. Applied Sci., 13 (13): 2372-2377, 2013

EXPERIMENT

In order to compare with (Liu et al., 2005), we use the
same program shown in Fig. 2 to verify the validity of the
algorithm.

Search for all DU pairs: By analyzing the program in
Fig. 2, the definition and use of variables for each nodes

Fig. 2. An example program with lnear function,
quadratic function and the sin function. (1) Float
X, Y, Z, U, W, (2) Scanf (“%f %f %7, &X, &Y,
&7), (3) U= (X-Y)=<2, (hHifOEY), (5 W=T, (6)
Else W=7, (7)ifl(WH+Z>100) (B) X=X-2, (9 Y =
Y+W, (10) Print f{(*Tinear™);}, (11) Else if(3{*X-
Z¥7> = 100 (12) Y = XxZ+1, (13)
Printf(“NonLinear: Quadratic™);}, (14) If (U=0),
(15) Printf{“%f”,10), (16) Else 1f((Y-Sm(Z))>0) and
(17) Printf(“Nonlinear: Sine™)

in the program’s graph can be obtained and the same to
all the feasible and testable DU pairs. It was shown in
Table 1.

Checking the feasibility and testability on DU pairs:
Using graphic theory and Washall algorithm, find out the
accessibility matrix of the program flow graph. According
to the accessibility matrix and Definition 6, check the
feasibility and testability on DU pairs and all the feasible
and testable DU pairs can be obtained. Tt was shown in
Table 2.

Without considering the variable name, remove the
DU pairs which have the same definition and use nodes,
we can get the following DU pair’s set:

DU = {<23>; <2, 4>, <2,6>;, <2,7>, <2 8>, <2,0>,
<2 11> <2,12> ; <2,16>; <3,5>; <3 14>,
<3,15>; <5,7>, <5,9>, <6,7>, <6,9>; < 9,16>, <12,16>}

Optimizing and selecting the paths of covering the DU
pairs: In accordance with 3.3, the following three paths
are easy to find for covering the DU pair’s set:

P =11,2,3,45,7,8,9,10,14,15}
P,=141,2,3,4,6,7,8,9,10, 14,16, 17}
P,=141,2,3,4,6,7,11,12,13,14, 16, 17}
Seeking the test data of P1, P2, P3: First seeking the test
data of P,. Step 7 is executed due to all the predicate
functions on path P, are linear. Construct the linear

constraint system of predicate functions on the input
variables directly:

X-Y=>0
2X-2Y+Z-100=0
2X-2Y >0

Table 1: All of the DU pairs
Variables The DU pairs
X <X,23% <X 245 <X 287 <X 2117 <X 2125 <X 811~

<X,8,12>
Y <Y, 2,37 <Y, 247 <Y,2,6% <Y,2,9% <Y,216% <Y,9,12%;

<Y,9,16> <Y,12,16>
Z <7,2,7%<7,2,11><7,2,12><7,2,16>
U <U,3,5>;<1,3,14>;<1U,3,15>
w <W,5,7>.<W,5,9><W,6,7>:<W,6,9>

Table 2: All the feasible and testable DU pairs
Variable The feasible and testable DU pairs

X <X,2,3> <X,24%; <X,2,8> <X,2,11> <X,2,12>

Y <Y, 2,37 <Y, 245 <Y,2,65 <Y,2,05 <Y,2,16% <Y.12,16%
<Y,9,16>

z <7,2.75<7,2 1 12<7,2,12<7,2, 16>

U <U,3,5%<U,3,14>:<U,3,15>

W W5 T SW 5.9 <W.6. T < W, 6,95

2375

J. Applied Sci., 13 (13): 2372-2377, 2013

Using the solving method of linear constrain system
in (Shan et al., 2002; Edvardsson and Kamkar, 2001), the
solution1s X=2,Y =1, Z = 100. Therefore, the new 1input
I, = (2,1, 100). As P ,can be passed by I, so I 13 the
sought test data.

Seek the test data for P,: Checking path P, in Fig. 2,
step 8 1s executed as the predicate function on the 16th
node is nonlinear. Given any arbitrarily chosen input Iy in
the program domain and iterative increments of input
variables AX, AY and AZ. eg., I, = (X, Y,, Z,) = (1, 2, 3),
AX =AY =A7Z =1.

The path P, is not traversed on I, so the steps for
iterative refinement of I are executed.

Since, the predicate function on the 16th node is
F =Y-Sm (Z), the linear arithmetic representation of it can
be represented as follows:

L(BP5, I, P) = bY+cZ+d

Approximate the derivatives of a predicate function
by its divided differences, thenb =1, ¢ = 0.89792:

bY, +cZ,+d =Y -Sin (Z,)

Solving the equation, d = -2.83488. The linear
arithmetic representation of predicate function F = Y-Sin
(Z)onlI, is:

L(BP16, I,,P,) = Y+0.897927-2.83488

Construct the linear constraint system of predicate
function on T; using linear predicate functions on P, and
the lmear arithmetic representation L{BP16, [,.P.):

X-Y=0
Y+Z-100=0
2X-2Y<0

Y +0.897922-2.83488> 0

Using the solving method of linear constrain system
in P, the solution is X = -80.15, Y = -79.15, 7 = 180.5.
Therefore, the new inputT, = (3.235, 3.835, 51.196).

The iterative refinement I, is needed to executed
repeatedly smce the path P, 1s not traversed on I, yet.
Finally, the path P, is traversed on I, = (101.125, 101.725,
-0.398) obtained in the third iterative. Therefore, the
algorithm 13 determined. I;1s the desired test data.

The test data of P, can be obtainedas X =1, Y =1,
7. = 0 according to the method described above. Thus,
when the test dataare (2, 1, 100), (101.125,101.725, -0.398)
and (1, 1,0), respectively, all the DU pairs can be covered.

The instance has been verified in the computer
with the system CPU P41.6G, 512M DDR, Linux OS
(Red Flag 4.1).

CONCLUSION

The main i1dea of the new algorithm 1s theoretically
analyzed in this study. The proposed method was verified
with an example. From the experimental results, the
algorithm can correctly generate test data to cover all of
the DU pairs. Though four paths are sought to cover all
of the DU pairs in (Liu et al., 2005), the available test data
are not generated. Furthermore, of which 2 paths are
infeasible after calculating and the DU pair’s coverage
only reaches 69% in fact. Compared with (Liu ef al., 2005),
the algorithm i this study only generates three feasible
paths and the DU pair’s coverage reaches 100%

ACKNOWLEDGMENT

This project supported by Hunan Provincial Natural
Science Foundation of China (No. 10JT6092).

REFRENCES

Alshraideh, M., B.A. Mahafzah and S. Al-Sharaeh, 2011.
A multiple-population genetic algorithm for branch
coverage test data generation. Software Qual
Control, 19: 489-513.

Alshraideh, M., L. Bottaci and B.A. Mahafzah, 2010.
Using program data-state scarcity to gude
automatic test data generation. Software Qual.
Control, 18: 109-144.

Diaz, E., I. Tuya, R. Blanco and J. Javierdolado, 2008. A
tabu search algorithm for structural software testing.
J. Comput. Operat. Res., 35: 3052-3072.

Edvardsson, J. and M. Kamkar, 2001. Analysis of the
constraint solver in UNA based test data generation.
ACM SIGSOFT Software Eng. Notes, 26: 237-245,

Gong, D., W. Zhang and X. Yao, 2011. Evolutionary
generation of test data for many paths coverage
based on grouping. I. Syst. Software, 84: 2222-2233.

Jlanguo, W., 2001. Generation of protocol test set
based on extended finite state machine. J. Software,
12:1197-1204.

Torgensen, P.C., 2003. Software testing: A Craftsman’s
Approach. 2nd Edn., Mechanical Industry Press,
China, pp: 143-159.

Tunko, H., 8. Shigeo and S. Hiroshi, 2009. Path coverage
properties of randomly deployed sensors with finite
data-transmission ranges. Comput. Networking, 53:
1014-1026.

2376

J. Applied Sci., 13 (13): 2372-2377, 2013

Kiran, L., M. Phil and H. Mark, 2010. An empirical
investigation into branch coverage for C
programs using CUTE and AUSTIN. I Syst.
Software, 83: 2379-2391.

Lijun, M., W.K. Chan, T.H. Tse and R.G. Merkel, 2011.
XML-manipulating test case prioritization for
KXML-manipulating services. J. Syst. Software,
84: 603-619.

Liw, Y., M. Zeng, .. Zhu, I.F. Chen and I.W. Yan, 2005.
Automatic test sequences generation technology
based on data flow rules. Microelectromces Comput.,
22:131-135.

Mingzhe, L., 2010. Graph Theory and Algorithm.
Mechanical Industry Press, China.

Nie, C. and H. Leung, 2011. The minimal Failure-causing
schema of combinatorial testing. ACM Trans.
Software Eng. Methodol., 20: 1-38.

2377

Rapps, S. and E.J. Weyuker, 1985. Selecting software test
data wing data flow information. TEEE Transac.
Software Eng., SE-11: 367-375.

Shan, JH., J. Wang, Z.C. Qi and I.P. Wu, 2002.
Improvement of the gupta method. Chinese
I. Comput., 25: 1378-1386.

Tao, L., F. Jian-Ping, L. Xiao-Wei and L. Ling-Y1, 2006.
Observability statement coverage based on dynamic
factored Use-definition chains for functional
verification. J. Electronic Testing, 22: 273-285.

Tikir, M. M. and T.K. Hollingsworth, 2005. Efficient online
computation of statement coverage. I. Syst.
Software, 78: 146-165.

	JAS.pdf
	Page 1

