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Abstract: Genetic Algorithms (GAs) have a proven ability to mprove the classification performance of
Back-propagation Neural (BPN) networks by optimizing their topology and parameter settings. However, before
they are used to optimize the BPN network, their parameters should be calibrated to improve the quality of the
results. Accordingly, the current study develops a robust design method mn which the Taguchi method 1s
employed to establish appropriate values for the main GA parameters, namely the crossover rate, the mutation
rate and the size of the population. The calibrated GA is used to optimize the parameters of BPN networks
designed to classify three different types of data, continuous, ordinal and nominal, to immumnize the noise of
the data type. The classification performance of each GA-optimized BPN is verified using datasets downloaded
from the server of the University of California’s Department of Information and Computer Science. The results
demonstrate that the process of calibrating the GA’s parameters prior to its use in optimizing the BPN network
vields a significant improvement in the network’s classification performance.
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INTRODUCTION

Data classification methods provide an efficient
means of resolving the “data overload™ problem faced by
many decision-makers. Typically, data classification
methods are designed to identify the unique
characteristics of the mput data so that they can be
assigned to appropriate classes. Common data
classification methods include the nearest neighbor
classifier, ID3 classification trees, fuzzy decision trees and
Artificial Neural Networks (ANNs) (Lotfi et al., 2006,
Giordano et al., 2007; Umer and Khiyal, 2007; Wu et al.,
2008; Gketsis ef al., 2009, Saravanan and Ramachandran,
2010, Wang et al., 2011).

ANN schemes have been widely applied for such
uses as forecasting and classification (Sun ef al,
2000, Zhang et al., 2001, Srivaree-Ratana et af., 2002,
Ambrogi et al., 2007, Fahimifard et al., 2009; Solaimani,
2009; Guet al., 2011, Tahir and Manap, 2012). In addition,
Back-propagation Neural (BPN) networks are one of the
most commonly employed of all ANNs and have been
successfully applied to solve many data classification
problems (Salchenberger et al., 1992; Nussbaum ef al.,
1995; Liu et al., 2001; Wakaf and Saii, 2009). However,
BPN networks have notoriously unreliable performance
when tramed using the Gradient Steepest Descent
Learning Algorithm (GSDLA). GSDLA-trained BPN
networks have two major drawbacks, namely: (1) the

GSDLA converges slowly to the optimal solution and (2)
when trapped mto some local areas, the GSDLA tends to
converge to local sub-optimal solutions during the
iterative optimization procedure (lkuno ef al., 1994).

Genetic Algorithms (GAs) have a proven ability to
improve the classification performance of ANN schemes
(Sexton et al., 1998; Goffe ef al., 1994; Ramasamy and
Rajasekaran, 1996, Panda ef al., 2007, Soltani et af., 2007,
Hsu et al, 2009, Liu, 2010). GAs have also been
successfully applied to identify the optimal BPN network
topology and parameter settings Sexton compared the
optimization performance between a genetic-algorithm-
derived BPN network and conventional BPN network
and found that in most cases genetic algorithms
could improve the BPN network (Sexton et al, 1998).
Sexton ef al. (1999) further compared the performance of
optimizing the BPN network derived using Simulated
Annealing (SA) and GAs on certain topologies of a BPN
network model. The values assigned to the GA’s
parameters, 1.e. the crossover rate, the mutation rate and
the size of the population, have a direct impact on the
results obtained for a particular optimization problem
(Kirkpatrick et al., 1983, Sexton ef al., 1999).

In decision-making, the data type and the distribution
pattern of the data values have a direct bearing on the
choice of statistical test used for their evaluation. It 1s
therefore important to recognize or at least to immunize
the attribute noise of the data pomnts in a sample drawn to
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represent the entire population. Broadly speaking, these
attributes may be categorized as continuous, ordinal or
nominal (Sheats and Pankratz, 2002).

Choosing a suitable classificaion model and
assigning appropriate level settings to each factor within
the model is a difficult task for even experienced decision-
makers. Generally, trial-and-error experimental techniques
are used to identify the sigmficant factors and to assign
appropriate factor level settings. However, such
approaches are invariably time-consuming and thus
expensive. Therefore, a straightforward and systematic
technique for calibrating the parameters of a GA such that
it can then be used to optimize the topeology and
parameter settings of a BPN network classification scheme
1s required.

Taguchi Orthogonal Arrays (OAs) (Taguchn, 1986)
enable robust, noise-immune design solutions to be
obtained from a minimum number of experimental trials.
Many studies have demonstrated the use of OAs n
calibrating heuristic algorithms. For example, Gupta (1999)
considered the problem of a tabu search-based heuristic
mechanism designed to solve the two-stage bow shop
problem. In the propoesed approach, the Taguchi method
was used to analyze the effects of four factors, namely the
initial solution, the type of move, the neighborhood size
and the list size, on the performance of the heuristic
mechamsm. The results enabled the optimal factor
settings to be determined and therefore improved the
effectiveness of the heuristic algorithm. Chien and Tsai
(2003) developed an analytical model for the prediction of
tool flank wear and then used a GA-based optimization
scheme, in which the parameters were calibrated using the
Taguchi method, to determine the optimal cutting
conditions when machimng 17-4PH stainless steel. They
showed that the model was capable of successfully
predicting tool flank wear.

The Taguchi method has emerged as the method of
choice for analyzing the main and interaction effects of
the ndividual factors of a design problem and for
screenung and ranking these factors such that optimal
design solutions can be obtained at a minimal
experimental cost (Roy, 1990). In the present study, the
Taguchi method 13 employed to calibrate the parameters
of a GA scheme used to optimize the topology and
parameter settings of a BPN network designed to classify
data of different types.

The objectives of the present study can be
summarized as follows:
¢ To provide decision-makers with the ability to
mmunize the noise of data types robustly such that
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they can establish the data collection method and
determine the construction of a highly efficient
classification model

To calibrate the GA used to design the BPN network
parameters and topology to enhance its optimization
performance

To investigate the optimal combination of the GA’s
controllable factors and their level settings by using
a robust noise-immune experimental design

To use ANOVA and the Analysis of the Mean
(ANOM) (Roy, 1990) to rank and screen the
controllable factors of the GA to reduce the
experimental cost

MATERIALS AND METHODS

This section describes the use of the Taguchi method
to screen and rank the main and interaction effects of the
controllable factors m the GA-based BPN classification
model so that the network’s classifying performance 1s
rendered robust when the data types are immune to noise.
The design process starts by identifying the various
attributes of the data types of common mterest to
decision-makers. Appropriate level setting ranges are then
specified for the controllable factors of the GA; i.e. the
crossover rate, the mutation rate and the size of the
population. These factors are then arranged n a Taguchi
orthogonal array so that their mamn and mteraction effects
can be systematically examined when the GA is applied to
optimize the topology and parameter settings of three
BPN networks designed to classify data of different types.
Figure 1 shows a schematic overview of the design
methodology applied in the present study. The basic
steps 1n this framework can be summarized as follows:

Step 1: Identify the attributes of different data types: In
general, data classification problems involve the
processing of a different number of attributes. In
practice, this implies that the topology and
parameter settings of the BPN network employed
to carry out the data classification process
depend on the natuwe of the input data.
Accordingly, this step of the proposed
methodology identifies the attributes of three
representative datasets (containing continuous,

data, respectively)

downloaded from the server of the Department of

Information and Computer Science (ICS) at the

University of California

Identify the BPN network topology and

parameters: The BPN network parameters include

ordinal and nominal

Step 2:
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Identify attributes types of Identify BPN decisiom
the problem perameters and topology
h h
. N Encode the genotype for
mm gal‘m" BPN decision parameters
.C.S., U.C. and topology
Construct orthogonal
design
Rank factors of adopted
Pool factors heuristic algorithm
Yes
Pool factors?
No
Optimize BPN network
parameters and topology
Validation of the
expetiments

the mitial weight value, learning rate, momentum
factor and number of hidden layers, number of
neurons in the first hidden layer and number of
neurons m the second lidden layer. In this step,
the calibrated genetic algorithm 1s used to specify
appropriate network values for the BPN.
Appropriate ranges are assigned to each of these
BPN network parameters to form an initial search
space for the GA optimization procedure
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Step 3:

Step 4:

Fig. 1: Framework of proposed robust design procedure for GA-based BPN networlk

Code the BPN network parameters in binary
form: The chromosomes of the genetic algorithm
should be in the form of a simple binary sequence
comprising a series of 0 and 1 sec. This study
thus uses a binary methed to encode and decode
the parameter and topology settings of the BPN
model, which are optimized using a GA

Identify the parameters of the GA used to
optimize the BPN network model: Appropriate
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level settings are assigned to the crossover rate,
mutation rate and size of the population
parameters of the GA to establish an mitial search
space for the Taguchi design procedure

Rank and screen the GA factors: Employing the
ANOVA statistical method, the effects of each of
the main GA parameters i the BPN network (and
the interactions between them) on the
classification performance are analyzed so that

Step 5:

the parameters with the greatest effect can be
1dentified

Calibrate and Pool the GA factors: Based on the
ANOVA results obtained in step 5, the effects of
pooling one or more of the controllable factors are

Step 6:

considered so that an informed decision can be
made regarding a potential trade-off between the
quality of the robust design solution and the
experimental cost

Optimize the BPN parameters and topology: The
calibrated GA 18 used to optimize the BPN
topology and parameter settings

Step 7:

Definition of different data types: Broadly speaking, data
can be classified as either continuous or categorical in
nature (Table 1). Qualitative data are always categorical,
whereas quantitative data are generally continuous but
may be categorical in some cases. Categorical data may be
further classified as either ordinal or nominal. Ordinal data
(e.g., ranking or grading data) have an order to their levels
of assignment, with each data point being more (or less)
severe than the previous one. Conversely, nominal data
(e.g., race or gender) have no mherent order to their levels
of assignment (Sheats and Pankratz, 2002). Consequently,
the data points in the sample used in this study include
continuous data, ordinal data and nominal data.

Identifying the BPN network parameters and specifying
appropriate ranges: Many studies have demonstrated the
ability of GAs to optimize the topology and parameter
settings of BPN networks so that their classification
performance can be improved. However, before the GA
can be applied to carry out this optimization process, it is
first necessary to specify exactly which BPN network
parameters are to be considered in the optimization
procedure and to assign an appropriate range to each one.
As discussed in step 2 above, six BPN network
parameters are considered in the current GA optimization
procedure, namely the mitial weight value, the learning
rate, the momentum factor, the number of hidden layers,
the number of neurons in the first hidden layer and the
number of neurons m the second hidden layer. Table 2
indicates the ranges assigned to each of these six
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Table 1: Overview of basis data types

Data type Description Examples

Continuous Variables that are measured and cantakeon  Height
any value along a continuum weight

Categorical Variables whose values fall into distinct -
categories or defined levels -

Ordinal Variables for which an order exists Grading
in the levels assigned ranking

Nominal Variables for which there is no hierarchical Race
order to the category level Sex

Table 2: BPN network parameters and setting ranges
Name of parameters and topology

Tnitial weight values factor

Learning rate

Mormenturm factor

Range

O<real mumber<1.0
O<real number<1.0
O<real mumber<1.0

Number of hidden layers 1<integer<2
Number of neurons in the first hidden layer 1<integer<63
Number of neurons in the second hidden layer 1<integer<é63

(if hidden layers=1)

parameters. In accordance with conventional BPN
network theory, the initial weight value, the learning rate
and the momentum factor parameters are assigned ranges
of 0-1.0. Although one hidden layer 1s generally sufficient
in most BPN networks, two ludden layers may be required
for more complex classification problems. Accordingly, in
the current study, the hidden layer parameter is specified
as either 1 or 2. The number of neurons m each
hidden layer 1s related to the total number of ludden layers
in the BPN structure (Zurada, 1995, Khaw et al., 1995;
Sexton et al., 1998). As a result, in the current study, the
number of neurons in the first and second hidden layers
15 specified m a more expanded range of 1~63 in both
cases.

Code the BPN parameters in binary form: In general, GA
optimization procedures commence with a population of
randomly-chosen chromosomes, where each chromosome
represents a potential solution to the specified problem
(Khoo and Loi, 2002; Kamrani and Gonzalez, 2003;
Siani and de Peretts, 2007). For computational simplicity,
Goldberg (1989) proposed that these chromosomes
should be expressed in the form of a simple binary
sequence comprising a series of O and 1 sec. The search
space for the current GA-based BPN optimization process
is defined by the BPN network parameter settings
specified 1 Table 2. Therefore, in accordance with the GA
methodology, each parameter range 1s transformed nto a
binary sequence and the individual binary sequences are
then concatenated to form a single chromosome string.
As shown in Fig. 2, this process results in the
construction of a string with a total of 39 bits of binary
code. The mitial weight range (1.¢., 0~1.0) 18 mapped using
a seven-bit sub-string. When decoding this string back
into a real number, the maximum decoded value is given
by 2-1(= 127). Therefcre, having identified the optimal
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chromosome via the GA iterative procedure, the
corresponding real value of the weight factor is given
by the quotient obtained when decoding the optimal
seven-bit sub-string and then dividing the result by 127.
As shown in Fig. 2, the learning rate, momentum factor,
mumber of hidden layers, number of neurons in the first
hidden layer and munber of neurons m the second hidden
layer are coded using eight-bit, ten-bit, two-bit, six-bit and
six-bit sub-strings, respectively. The real optimal values
of each parameter are obtained using the same decoding
and division procedure as that described above for the
welght factor.

Construct orthogonal design: The OAs used in the
Taguchi method enable the optimal design parameters to
be established from a minimum number of expeniments and
therefore reduce the total experimental cost. Moreover,
the use of an OA enhances the reproducibility of the
experimental results and enables an objective setting of
the experimental factor levels. Various OA layouts are
commonly emploved and the choice of an appropriate
array depends on the degrees of freedom of the particular
experiment. The CA notation L, (2°) indicates that the
experiment requires a total of four trial runs, where each
trial run involves a maximum of three factors, the values of
which can be assigned on one of two different levels.
Similarly, an L. (3*) OA prescribes nine experimental runs,
each mvolving a maximum of four factors with three
permissible level settings. As shown in Table 3, the
Taguchi procedure used to calibrate the controllable
factors of the GA 1s performed using an OA of the latter
type. In this table, the four columns correspond to the
three controllable factors of the GA (ie., the crossover
rate, mutation rate and the size of population and the

0101010 10101010 0101010101 10 010101 101010
Sub-string 1 2 3 4 5 6

Fig. 2: Binary code representations of BPN network

interaction between the crossover rate and the mutation
rate). The table indicates that in the first experimental run,
the three controllable factors
parameter are all assigned their Level 1-settings. Sumnilarly,
in the second experimental run, the crossover rate is

and the mteraction

assigned its Level-1 setting, while the mutation rate, size
of population and interaction effect are all assigned their
Level-2 settings. The remaining trial runs are arranged in
such a way as to achieve an orthogonal property (Roy,
1990).

The quality of the design solution achieved in each
experimental run is assessed using the followmng
signal-to-noise metric:

S/N = -10Log,,(MSD)

where, MSD i3 the mean-squared deviation of the
experimental result from the target value of the specified
quality characteristic, ie, MSD = (y/+v%vy’%..)/n
where y,, v,... etc. are the deviation of the experimental
result y; from the target value (where 1=1...n) and n 1s the
total number of repetitions of v,.

Rank selected factors: Having performed the experimental
trials prescribed in the OA, the experimental outcomes are
analyzed using conventional ANOVA and ANOM
statistical methods. In the analysis procedure, the
ANOVA statistical technique is applied to rank the
controllable factors of the GA (and the interaction effect
between them) in terms of the extent to which they affect
the classification performance of the BPN. The ANOM
approach 1s then used to establish the optimal level
settings for each of the controllable factors and the
interaction term.

Pool selected factors: The ANOVA-based ranking and
screening results may indicate that one or more of the
controllable factors can be pooled, since variations in
their values have a negligible effect on the BPN network

parameters classification performance. Having pooled the least
Table 3: L, (3°) orthogonal array for current classification model of GA
(Enaisi)
A B AB C
L, experiment/colurmnn 1 2 3 4 Glass Dermatology Hayes-Roth SN,
1 1 1 1 1 0.0244778 0.00946149 0.00848975 35.959
2 1 2 2 2 0.0282868 0.00982626 0.00389588 35172
3 1 3 3 3 0.0221551 0.00792481 0.00352253 37.243
4 2 1 2 3 0.0202524 0.00811437 0.00520779 37.754
5 2 2 3 1 0.0279098 0.00972380 0.00521220 35.226
6 2 3 1 2 0.0274912 0.00937310 0.00363589 35442
7 3 1 3 2 0.0267135 0.01121120 0.00369510 35462
8 3 2 1 3 0.0225782 0.00882387 0.00411497 36.957
9 3 3 2 1 0.0212302 0.00922303 0.00519036 37.268
A: Crossover rate, B: Mutation rate, C: Size of population, AR: Intraction between crossover and mutation rate
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influential factors, a further optimization experiment is
then conducted using the remaiming controllable factors
to ensure that the quality of the solution 1s not seriously

degraded.

Optimize the BPN network topology and parameters
using calibrated GA: In the discussions above, m the
calibration process the GA parameters are assigned in
accordance with the level settings in each row of the
orthogonal array and the GA is then used to search for
the optimal BPN parameter settings for each of the
classification problems (Glass, Dermatology and Hayes-
Roth m this study). Finally, the classification performance
of each BPN network 1s evaluated by computing (Egyq),
as shown m Table 3. Once the GA has been calibrated, it
15 used to optimize the BPN networks used to solve the
three data classification problems.

In general, the quality of the BPN network
classification results 1s evaluated using the root-mean-
square normalized error (Epyey) metric:

where, P 13 the number of nput examples, K 1s the number
of output neurens, d, is the expected output value of the
Jth neuren in the ith example and o, 1s the actual cutput
value of the jth neuron n the ith example.

Illustrated example: In this study, the performance of
GA-optimized BPN  networks evaluated by
considering  their solving data
classification problems mvolving three different types of
data, namely continuous, ordinal and nominal.

Table 4
databases downloaded for evaluation purposes from the

was

effectiveness in

summarizes the characteristics of the

server of the Department of Information of Computer
Science (ICS) at the University of California. The major
features of these three databases are discussed.

Glass database: Continuous data values; 100 tramung
samples and 258 testing samples. Glass splinters left at the
scene of a crime may provide investigators with valuable
clues. Therefore, a typical data classification problem
involves analyzing the properties of a glass splinter such
that its type can be identified. The nine attributes of the
data records in this database include nine input attributes,
namely the refractive index, sodium, magnesium,
aluminum, silicon, potassium, calcium, barium and iron
and one output attribute, the glass type (float-processed
building windows, non-float processed building windows,
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Table 4: Problem data types

Datatype  No. of attributes No. of training No. of tests Data base
Continuous 9 100 258  (Glass
Ordinal 34 100 114  Dermatology
Nominal 4 100 32  Hayer-Roth

float-processed vehicle windows, non-float processed
vehicle windows, contamers, tableware or headlamps).
Therefore, in using the GA to optimize the structure of a
BPN to perform this classification process, a total of mine
neurons are specified in the input layer and one neuron is
specified in the output layer.

Dermatology database: Ordinal values; 100 training
samples and 114 testing samples. In the dermatological
field, performing differential diagnoses of erythemato-
squamous diseases is a common requirement. The dataset
includes 34 mput attributes and a single output attribute.
As a result, during the GA optimization procedure, the
input and output layers are assumed to have 34 neurons
and one newron, respectively. In the dataset created for
this domain, the mput samples are classified in a range of
0 to 3 to indicate the presence or absence of 34 features.
Every feature used for classification purposes is assigned
a degree in the range of 0 to 3, where 0 indicates that the
feature 13 not present, 1 and 2 mdicate the relative
intermediate values and 3 indicates the largest amount
possible. The seven diseases classified in the output
neuron are psoriasis, seboreic dermatitis, lichen planus,
pityriasis rosea, cromic dermatitis and pityriasis rubra
pilaris.

Hayes-Roth database: Nominal values; 100 training
samples and 32 testing samples. Each record in this
dataset has four input attributes, namely hobby, age,
education and marital status and one output attribute
corresponding to three different classes. As a result,
during the GA calibration procedure the BPN 1s specified
as having four nodes in the input layer and a single node
in the output layer.

Calibration of GA control factors using Taguchi method:
The controllable factors of the GA were calibrated by
performing a Taguchi design process m which the GA
was used to identify the optimal topologies and param eter
settings of the BPNs required to solve the classification
problems described above. In performmg the Taguchi
design process, the controllable factors of the GA were
assigned three levels, i.e., crossover rate (0.5, 0.7, 0.95)
(Mamezzo, 1994; Srimvas and Patnaik, 1994), mutationrate
(0.001, 0.01, 0.05) (Perez and Holzmann, 1997) and size of
population (10, 20, 30) (Maniezzo, 1994; Perez and
Holzmann, 1997). The treatment levels of these
controllable factors are summarized in Table 5.
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Table 5: Factor levels of GA

Table 6: ANOVA analysis for GA controllable factors

Factors Level-1 Level-2 Level-3 Column  Factors f 5 v P
Crossover rate 0.5 0.7 0.95 1 A 2 0.36977 0.18489 4.4
Mutation rate 0.001 0.01 0.05 2 B 2 1.18620 0.59309 14.2
Size of population 10 20 30 3 Interaction AxB 2 0.96498 048249  11.6
4 c 2 5.82840 2.91420 69.8
Other error 0 0 0.00000 0.
RESULTS AND DISCUSSION Total 8 8.34930 100%

As discussed m Previous Section, the controllable
factors of the GA were calibrated using a Taguchi design
procedure based on an I, (3") OA. As shown in Table 3,
this array prescribes mne experimental trials mvolving
four factors, each with three level settings. Columns 1, 2
and 4 are assigned to the controllable factors as follows:
Column 1: Factor A (crossover rate), Column 2: Factor B
(mutation rate) and Column 4: Factor C (size of
population). Column 3 is used to investigate the effect of
the mteraction between factors A and B. The numerals in
columns A, B and C correspond to the factor level
settings shown in Table 5. Tn the calibration procedure,
the optimal BPN network structure for each of the three
data classification problems was identified using the
factor level settings specified in the nine experimental
trials. The quality of the corresponding solution (1.e., the
classification performance of the resulting BPN network)
was evaluated using the Fgyq metric. The corresponding
results are presented n the Glass, Dermatology and
Hayer-Roth columns of Table 3.

Ranking selected factors: Having conducted the
experimental trials, the Eg,, data were analyzed using the
ANOVA statistical method to rank the controllable factors
and the mteraction factor m terms of their relative
influences on the classification performance of the BPN
network. The full details of this analysis process are
presented in Roy (1990) and are therefore omitted here.
The ANOVA analysis results for the current Taguchi
experiments are presented in Table 6-8, in which the
column headings are defined as follows:

= Degree of freedom

= Sum of squares

= Pure sum of squares (pooled)
= Mean squares (variance)

= Variance ratio

= Percentage contribution

v wm

o

Note that in the discussions which follow, the term
“interaction” (indicated by the symbol “x” between the
two interacting factors) describes the condition in which
the effect of one factor’s mfluence upon the result 1s
dependent on the level setting of the other. The right-
hand column of Table 6 indicates that the percentage
contributions of facters A, B and C are 4.4, 14.2 and
69.8%, respectively, while that of the interaction term A=B

18 11.6%. In other words, these factors can be ranked in
terms of reducing mfluence as follows: factor C, factor B
and factor A. To evaluate the potential for reducing the
experimental cost and difficulty, the following section
considers the step-by-step pooling of factor A, the
interaction term AxB and Factor B, respectively and
evaluates the corresponding effects on the quality of the
design solution.

Factor pooling analysis: Table 7 presents the ANOVA
analysis results for the case where Factor A and
interaction factor AxB are pooled Tt can be seen that
factor C (with an F value of 8.7332 in Table 7) has a
significantly greater effect on the classification
performance of the BPN than factor B. Conducting an
F-test, the F values are found to be E; ;5. =6.9443 at a 95%
confidence level (F Table F,.(f,. £2). 953% confidence).
Table 7 shows that F;=1.7774 and F.=8.7332. Since,
Fy=1.7774is less than the value computed in the F-test,
ie., Fuow-=6943 factor B can also be pooled with factor
A and the mteraction factor AxB. The corresponding
ANOVA analysis results are presented in Table 7 and 8.
The results indicate that the value of Factors A and B
(i.e, the crossover rate and mutation rate) can be
arbitrarily assigned within the defined range without
significantly  influencing the performance of the
GA-optimized BPN network classification scheme.

Using calibrated GA to identify the BPN network
parameters and topology: As described previously, the
optimal levels of each GA parameter are obtained using
the ANOM statistical method. Observing the entries in
Column 1 of Table 3 corresponding to factor A, it can be
seen that “Level 17 occurs i experimental runs 1, 2 and 3.
The average effect of A, (i.e., the Level-1 setting of factor
A) can be calculated by processing the S/N ratios
corresponding to these three experiments as follows:

A, = (8N, +8N, +8N,)/3= (35.959+35.172 + 37.243)/3=36.125

The average effects of the level-2 and level-3 settings for
factor A can be computed n a similar manner. The
procedure 1s then repeated for the three level settings of
factors B and C and the
corresponding results are summarized in Table 9 and it

mnteraction term. The
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Table 7: ANOVA analysis for GA controllable factors (factors A, AxB pooled)

Column Factors f S v F 5 P

1 Factor A 2 0.36977 Pooled

2 Factor B 2 1.18620 0.59309 1.7774 0.5188 6.2

3 Tnteraction A=B 2 0.96198 Pooled

4 Factor C 2 5.82840 29142 8.7332 5.1610 61.8
Other error 4 1.33475 0.33369 1.3348 32.0
Total 8 8.34930 100%0
Table 8: ANOVA analysis for GA controllable factors (factors A, B, A=B pooled)

Column Factors f 3 v F s P

1 Factor A 2 0.36977 Pooled

2 Factor B 2 1.18620 Pooled

3 Tnteraction A=B 2 0.964198 Pooled

4 Factor C 2 5.82840 29142 6.936 4.9881 0.59742
Other error & 2.52090 042016 2.5200 0.40258
Total 8 8.34930 100%
Table 9: ANOM analysis of main effects (S/N) the parameters of BPN networks designed to classify data
Factor Level 1 Level 2 Level 3 £ diff t ot 1 ti dinal d
Crossover rate A 36.125 36.141 36.562 ot - diferent types, namely CONUIUOUS, ordinal an
Mutation rate B 36392 35.785 36.651 nominal. Overall, the results show that the calibrated GA
Interaction A~B 34119 36.731 35.977 yields a significant improvement in the classification
Size of population C 36.151 35.359 37.318

can be seen that the S/N ratio of factor A 1s maximized
when the level-3 setting 1s specified. In the Taguchi
experiments, a higher S/N ratio indicates improved BPN
network classification performance. Hence, the results
presented in Table 3 mdicate that the GA parameters
should be specified as follows: Factor A: TLevel 3
(cross-over rate of 0.93); Factor B: Level 3 (mutation rate
of 0.05); and Factor C: Level 3 (size of population of 30).

Effects of calibrating the GA factors on the BPN
classification performance: The experimental results were
performed usimng MATLAB version 6.5 (Math Works)
running on a Pentium(R) CPU 1.73 GHz PC.

It can be deduced that when all three of the GA’s
controllable factors are calibrated, the BPN network
classification performance 15 0.0105 (simulation test).
When only Factors B and C are calibrated (1e., as
considered m Table 7), the BPN classification performance
is found to be 0.0111. When only Factor C is calibrated
(i.e., as considered in Table &), the BPN network
classification performance is 0.0114. Finally, when none of
the controllable factors are calibrated, the BPN network
classification performance 13 0.0134. RMSE 1s reduced
from 0.0134 to 0.0105; the error rate represented by RMSE
is effectively reduced by about 21.64%.These results
confirm that the use of the orthogonal array in calibrating
the GA’s controllable factors extends the solution search
space, thereby increasing the probability of achieving
improved performance.

CONCLUSION

This study employed the Taguchi design method to
calibrate the controllable factors of a GA used to optimize
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performance of the BPN networks.

Furthermore, the ANOM and ANOVA results not
only indicate appropriate level settings for each of the
controllable factors in the GA but also mdicate which of
the controllable factors have the greatest effect on the
BPN performance, thereby enabling decision-makers to
identify those factors which need to be carefully
controlled.

Tracking the genetic algorithm used m this study
increases the search space to raise the possibility of
finding the optimal solution. In conclusion, the approach
proposed in this study provides a method for developing
robust noise-immune classification models for a variety of
data types.
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