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Abstract: This study, pertinent to the problem that the traditional process optimization of assembly line
optimizes only for single target but neglects other important elements, builds the mathematical model for the
multi-objective, including maximizing the capacity, balancing the load and minimizing the cost, process
optimization of the assembly line of the passenger car engine. Based on the features of the passenger car engine
assembly, such as complex steps, too many stations, expensive tools and great market demands, this paper
adopts the GASA algorithm combining the genetic algorithm and the simulated annealing algorithm for solution.
Experiments show that such model and algorithm can scolve the process optimization problems of the passenger

car engine assembly line effectively.
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INTRODUCTION

Along with the fast development of modemn industry,
the passenger car ownership increases daily and the
manufacturers are attaching more and more importance to
umnprove the management quality while pursuing for better
quality. Since, the engine assembly line is a
technology-intensive  manufacturing step of  the
passenger car enterprise and the engine quality 1s crucial
to the overall car quality, the process of the engine
assembly line turns
(Erel and Sarin, 1998).

The engine process is to distribute the general
production flow of the engine into different stations on
the assembly line reasonably and effectively. It involves
in a lot of elements, including the load balance of the
engine station, the comprehensive balance of the
human-machine efficiency and the configuration of the
tools and frocks (Douma et al., 2011).Thus the process
optimization 1s actually the portfolio optimization and the
changes of the sequence of different work steps decided
by product design, process design and the manufacturing
techniques make the process problem rather complex
(Peng et al., 2011).

At present, the

to be a hot research item

researches on the process
reasonability focus on the balance of the assembly lines
with the target to make the stand-by time of different
stations on the assembly line as close to each other as
possible. However, the manufacturers, while pursuing for
high balance rate, may choose to realize such target at the

cost of capacity loss and increasing cost. Therefore, it is

urgently needed to evaluate the process performance from
multiple angles. To build the multi-objective process
optimization model and work out solution then turns mto
a key research direction of the assembly line of passenger
cars.

RELATED WORK

The process optimization problems of the engine
assembly line lies at the researches on the assembly line
balance 1ssues. The assembly line balance 1ssues contain
two types (Xiao, 2010). Targeting to mimmize the work
station quantity, Mao and Zheng (2010), Fan et al. (2010)
carried out researches on the first type balance issues,
trying to reduce the construction cost of the production
line and such researches are greatly used in the process
planning stage. The second type of balance issues had
been analyzed (Jian-Sha et af., 2010), aiming to mmnimize
the production steps and such analysis exists along with
the ongomng optimization of the production line.

These two types of researches focus on smgle
objectives from different angles. However, the assembly
line of the passenger car engine 1s featured with complex
process procedures, great many of work stations, great
market demands and too many tools and frocks. Just take
the frocks and tools for example, if the process design can
save the configuration of some tools and frocks,
considerable cost can be saved. Thus, it is not enough
for the process design and optimization of the
engmne assembly line to comsider only the balance
issues. All influential elements should be considered
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comprehensively in order to study the multi-objective
optimization of the assembly line of the passenger car
engine (Wang., 2012).

As for the portfolio optimization issues, mcluding the
process optimization, of the assembly line, (Klein and
Scholl, 1996) use the branch and bound method for
solution. However, this method belongs to the
mathematical programming approach and is applicable
only to solve small-scale issues and can hardly apply to
the large-scale multi-objective assembly lmes of the
passenger car engines that have too many process
procedures; Fan ef al. (2010) argues to use the genetic
algorithm for solution, but it may easily lead to partial
optimization since the process procedures of the
passenger car is too many, the priority of the procedures
are always changing and the genetic algorithm has a fast
convergence rate.

Therefore, considering the process design of the
engine corporate and the actual optimization needs and
targeting on three elements mcluding the capacity,
balance and cost, this paper builds the multi-objective
mathematical algorithm of the assembly line of passenger
cars. Meanwhile, pertinent to the features of the assembly
line, this paper adopts the GASA algorithm which inherits
not only the fast convergence rate of the genetic
algorithm but also the strong solving ability of the
simulated annealing algorithm. Finally, in order to enhance
the production efficiency and cut down the production
cost, this paper provides feasible solutions for the
assembly line problems of the passenger car engine.

MULTI-OBJECTIVE OPTIMIZATION
MATHEMATICAL MODEL

Model definitions: It is assumed that there is one
assembly line equpped with one engme and requires
totally m procedures distributed to n stations. Then we
define:

I: Indicate the procedure No. i (I = {1,2, ..., m}, iel)

1- Indicate the station No. T: (j = {1, 2,..., n}, JeI)

t;  Indicate the working hours of the procedure No. i to
reflect the working speed of this procedure, 1€1
Indicate the quantity of equipments required by the
procedure No. 1. 1€]

¥, to indicate whether the procedure i is assigned to the
station j, 1t 18 the decision variable of the process
optimization:

1,the procedure has been assigned to station

L 0,the procedure hasn't been assigned to station

O, to indicate the working hours of the working hours of
the station j, that is, the working cycle, Oj = tX;

P, to indicate the calculated value of the equipment
demands on the station j, P, = ¢ X

D, to indicate the precedence relationship of the
procedures a and b, P, = ¢ X;;:

. {l,the procedure a goes before the b
o=

0,there iz no limitation on the precedence of procedures a and b

Thus, we can model for the process optimization
according to the above mentioned variables and
intermediate variables.

Model objectives: According to the features of the engine
assembly, that is, complex procedures, too many work
stations, expensive frocks and tools and great market
demands, the mathematical model of the process
optimization should take the capacity, balance, cost and
other elements mto consideration to buld the
multi-objective process optimization model for the engine
assembly line (Fattahi ef af., 2012). Focusing on the
dimension difference among different objectives, this
paper adopts the self-adaption weighting method to
adjust the weight of different objectives at real time and
the objective function 18 shown m the following formula

(1).
Min Z = o, P,y b, (1)

Tn which, «, B, v is the weight of different indexes,
respectively, ¢, the capacity index as shown in Formula
(23, is the balance index as shown in Eq. 3 while ¢, is
the cost ndex as shown i Eq. 4:

nxmax(t.x. )

M

3 (2)

o, = [3(max(0,)- 0, = |3 (maxt,X,) - X, 3
= =1

CPBZEQJ' (4)

Considering that the most common equipment used
in the engme assembly 1s the electric gun or the
pneumatic gun used to tighten the bolt, which then result
in the consequence that the calculated value on the
station j needing more than one equipment is always
reflects that the actual need 1s only one equipment, thus
inEq. 4, & reflects the actual value of the equipment needs
on the station j and its values are: ¢, =1 (when F;>0) or
;= 0(when P, = 0). Finally the multi-objective function of
the mathematical model for process optimization 1s built.
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Model constraints: If the station j can complete i
procedures, then the model should meet following
constraints:

¥ x, =1(vieT) (5)

Equatoin 5 ensures that each procedure 1 can and can
only be assigned to one station j, Eq. 5:

o n

EEXU:m (6)

]

Equation 6 guarantees that the total quantity of the
assembly operations of each station j is the equal to the
total quantity (m) of procedures:

X < ixh (7
=

If the procedure | goes before the procedure k, that 1s,
when D, = 1 and if the procedure k is assigned to the
station h, then the procedure 1 will for sure be assigned to
station h or afterwards. Equation 7 then ensures that
procedures vk, 1 can meet the precedence relationship for
assembly of procedures k, 1.

SOLUTIONS TO THEMULTI-OBJECTIVE PROCESS
OPTIMAZATION

GASA algorithm design: A lot of experts and scholars
use the heuristic algorithms, such as the ant colony
algorithm (Mao and Zheng, 2010), the genetic algorithm
(Mutlu et al., 2013), the particle swarm algorithm and the
simulated annealing algorithm (Suresh and Sahu, 1994), to
solve the assembly line problems. In all these algorithms,
the Genetic Algorithm (GA) has advantages such as fast
convergence rate and strong parallel capacity, but it
has the defect of “early maturing”. And since the
engine assembly line has too many procedures
(Chica et al., 2012), the traditional GA will omit the
optimum solution. Thus, its search capacity shall be
enhanced. The Simulated Annealing algorithm (SA) has
similar thoughts with the physical annealing, that 1s, it has
features of weak dependence on imitial solution and
strong search capacity. However, it runs slowly
(Wang et al., 2005). Therefore, this paper mixes the SA
into GA and uses SA to strengthen the solution rang
while ensuring the overall speed of the algorithm is
reasonable and finally obtains the optimum solution
(Wang et al., 2012). Figure 1 for the GASA algorithm flow.

The left half part of Fig. 1 shows the process of GA
algorithm, the step “generate station division” is
produced dynamically under the feasible process
sequence and the dynamic allocation method 13 adopted.
Fig. 2.

InFig. 2, the “generate station division” method is as
follows:

¢+ Step 1: Initialize cycle: calculate the average
processing time T, and choose the bigger one from
T, and max (t;) as the minimum theoretical cycle:

r - 2ub (®)

In which, m 1s the procedures quantity, t; is the
time consumed by the procedure 1 and n 1s the station
quantity

+  Step 2: Take the minimum theoretical cycle as the
basis to assign the procedures to n stations and
calculate the average time consumption of each
station T;; (j1 =1, 2,..., n) and solve the cycle CT.

s+ Step 3: Calculate the time consumption of each
station after the potential increment treatment: T;, =
T+t,g1 =1, 2, ..., n) 1s the time of the first procedure
assigned to the station (j1+1) and work out the cycle
cT”

»  Step 4: Check whether CT<CT, if so, then CT 1s the
mimmum cycle and such allocation scheme 1s the
optimum, or otherwise take CT" as the minumum
theoretical cycle and return to Step 2

After selecting the variant chromosome and then
imbed the SA algorithm into GA (Gurevsky et af., 2013).
You can refuse the offspring whose gene doesn’t meet
requirements to ensure that the optimum solution can be
saved to the final. The realization flow 1s shown in the
right part of Figure 1 and the steps are as follows:

» Step 1: Judge the outer circulation: whether the
appointed temperature 1s reached? End if so, or carry
out the next step

¢+ Step 2: judge the inner circulation: whether the
appointed times are reached? Forward to Step 8 if so
or carry out the next step

¢ Step 3: Variation. Generate a variation point
randomly and cut the parent chromosome into two
parts. Save the front part and realign and combine the
back part chromosome according to the precedence
matrix and then get the offspring chromosome. Since
the generation of the back half chromosome depends
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on the precedence matrix, thus the feasibility of the
chromosome 1s ensured

(13):2429-2435, 2013

| Some intial chromosome |

Reach appointed
temperature

Circulate to
ointed times?

End

| Variant chromosome |

Betterthan
primitive solution
N
| Calculat probability P |

w \
—
Temperature drops | ¢————

SA partial decomposition

Step 4: Judgment. Calculate the energy value of both

the parent and the offspring chromosome and mark

them as Eland E2. Forward to Step 7 if AE =E,-E, <0

or carry out the next step

»  Step 5: Probability calculation. According to the
Metropolis law, the probability of the particles
towards balance under temperature T is P= e-
AE/(KT), here K 1s a Boltzmann constant

»  Step 6: judgment. Generate a digit between 0-1
randomly and carry out the next step if this digit is
bigger than the above probability, otherwise transfer
to Step 2

»  Step 7: Accept the variant offspring chromosome to
replace the parent chromosome and transfer to step
2 until the inner circulation end conditions appear

»  Step 8: Cool down the temperature. T° = K*T, here T

1s the cooling constant. Transfer to Step 1 until the

outer circulation end conditions appear

GASA-based model solution process

Code: Firstly, carry out traditional algorithm code to the
process optimization object. The process optimization
mainly solves problems at two aspects: arrange the
procedures and allocate the stations. We code to
solve the presentation of the procedure arrangements.
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Considering that the engine has too many procedures, for
the purpose of convenient expression, this study adopts
the natural numbers for coding. That is, match each
procedure to one natural number and the sequence of the
natural number is the precedence order of the processing
procedures. For example, 1 3246 87 5 is a series of
chromosome and 1t ndicates that the procedure 1 comes
first and then procedures 3, 2, 4, 6, 8, 7 and finally 5.
According to the coding method and the relationship
matrix, the computer then generates a group randomly and
each chromosome string mside the group 1s a feasible
solution to the problem.

Fitness calculation and chromosome selection: The
establishment of fitness function depends on the
objective function. According to the above contents, the
objective function is made up of three parts, thus the
fitness function should also be cut into three pieces:

Fitness = ¢/ P/ +y./b; )

In which, ¢,, ¢, ¢, are the same with those in the
objective function in Eq. 1; «,, P,. Y, are the dynamically
calculated index weights under the self-adaption
algorithm. Weights are the standards to reflect the
importance level of the indexes. Under normal conditions,
the indexes need to be compared belong to the same
dimension and the weight sum of all the indexes 1s 1.
Pertinent to the model built in this study, the adaptability
weight method is used since the artificial weight allocation
1s not objective because the fitness value ranges of these
three parts differ a lot from each other.

Later, the roulette approachFan et al. (2010) is used.
The selective probability of each mdividual 1s calculated
according to their fitness value:

B/ Y
=]

Here P, 1s the fitness value selective probability, f the
fitness value of some chromosome and N the group size.

Crossover and variation: The purpose of crossover is to
produce better chromosome and the key 1s how to keep
the feasibility of the chromosome, that is, the sequence of
the procedures after the crossover will still meet the
precedence relationship matrix of the procedures.

This study adopts the two-point crossover method
and the crossover process is as follows:

*  Step 1: Generate two strings of parent chromosome
randomly

s Step 2: Generate two crossover points randomly and
cut each string of parent chromosome into three
sections

»  Step 3: Keep the st and 3rd clromosome sections
and arrange the procedures at the middle part of one
parent chromosome string according to the sequence
of the same 1 the other parent chromosome string to
form the offspring chromosome

Tt can be seen from Step 3 that the offspring
chromosome 1s the feasible chromosome since the
arrangement sequence of the offspring chromosome after
the crossover is stemmed from the pre-crossover parent
chromosome.

Then, carry out the variation operation of the
chromosome by using the simulated annealing algorithm
according to the above mentioned algorithm design. Here
the inner circulation end condition is that the iteration
shall reach certain times while the end condition for the
outer cwculation 1s that the designed mimmum
temperature shall be met. Thus, going through the above
steps, new groups will replace the old ones.

CASE STUDY

Take the core part of the assembly line of the
passenger car engine of company B for example. There are
totally 5 work stations requiring totally 38 procedures.
Their sequence order, procedure time and assigned
equipment quantities are shown in Fig. 3.

In Fig. 3, the digits m the ciucle represents the
procedure mumber and the digits above the circles
indicate the procedure time and those colored circles
means that equipments are required to finish such
procedures.

Use GASA algorithm to solve under the Matlab
environment and the program running results are shown
in Fig. 4 while Fig. 5 is the iteration map:

The digits at the left side of each column of Fig. 4 are
the procedure number while the digits at the right pat
indicate the procedure time. The process sequence is from
the bottom to the top. The horizontal axis of Fig. 5 is the
iteration times and the vertical axis indicates the each
iteration optimum value. Figure 5 proves the good
convergence of this algorithm.

The solution results by using the traditional genetic
algorithm are shown in Fig. 6.

According to the above running results map, the
results of the traditional GA and the GASA algorithms are
shown in Table 1.

It can be from the “station time
consumption” column of Table 1 that the cycle of

SCCI1
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Fig 3: Map of processing procedures
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Fig. 5: GASA optimum solution iteration map

GASA is 76-7]1 = 5seconds less than the traditional GA
and thus the capacity 1s enhanced greatly; it can be found
from the compearison between Fig. 4 and 6 that the station
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Work Ststlon

Fig. 6: Running results of traditional genetic algorithm

Table 1: Case results

Algorithms __ Sta-tion Sequence Cycle time
GASA 1 4-27-7-1-23 70
2 13-22-3-8-2-5-10-6-9 71
3 11-15-14-16~12-19 70
4 20-21-17-26-28-18-25-29 71
5 34-30-24-32-31-33-35 71
Traditional 1 4-23-22-7 58
GA 2 27-1-13-8-3-2-5-6-10 74
3 11-9-15-14-16-17-19 72
4 18-12-20-21-24-25-29-31 76
5 26-28-30-34-33-32-35 73

load of GASA 1s better balanced. Therefore, GASA can
obtam better solution and realize the process optimization
better.

CONCLUSION

Considering that different objectives involved in the
balance of the engine assembly line are always
contradictory to each other and the optimization to one
objective will then results in the degradation of other
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objectives, this paper builds the multi-objective process
optimization mathematical model for the assembly line of
passenger cars by taking the capacity, balance rate and
cost mto consideration and later uses the GASA
algorithm for solution. Actual case proves that this model
and related algorithm can optimize the process of the
large-scale assembly line of passenger car engines in
certain degree and thus enhance the comprehensive
performance of the process and the performance of the
algorithm is better than the traditional genetic algorithm.
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