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Abstract: The restructuring and deregulation m electric power mdustry has created the extreme short-time price
volatility and heightened the importance of risk management in competitive electricity marleets. Accurately
characterizing the electricity price volatilities is the foundation to effectively evaluate the price risk in electricity
market. With the system demand for electricity as an exogenous explanatory variable, a model to estimate
value-at-risk via,, a GARCH specification (GARCH-VaR) 15 proposed, in which the seasonalities,
heteroscedasticities, lepkurtosises, heavy-tails and volatility-clustering can be jointly addressed. The impacts
of probability distribution assumption and the time-varying features of parameters of the proposed model on
the accuracy of VaR estimation are analyzed for three innovation’s distributions: normal, student-t and skewed
student-t. The numerical example based on the historical data of the PIM electricity market shows that the
GARCH-VaR model with conditional skewed student-t innovations performs better in predicting one-period-
ahead VaR but the one with Gaussian distribution underestimates the higher quantiles and the one with
student-t distribution overestimates the lower quantiles. These results present several potential implications

for electricity markets risk quantifications and hedging strategies.
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INTRODUCTION

The distinctive characteristics of electric energy
which cannot be effectively stored through time and
space and need mstantaneous balance for supply and
demand make electricity price present highly wmusual
volatility and occasional extreme movements of
magnitudes rarely seen m traditional financial markets,
thus the power market participants are facing enormous
risk of loss. If volatility of price risk m electricity market
cannot be effectively identified, assessed and managed,
it is possible to cause disastrous consequences for
electricity market participants. Once financial risk occurs
i electricity market, there have more serious negative
effects on society and economy than in traditional
financial market. For example, during 2000-2001, what
defined the period as Califorma’s electricity criss,
California has suffered tremendous economic disruption
from the upheaval of its electricity markets. Two
investor-owned utilities, PG and E and SCT, had racked up
$12 billion of under collections and were on the verge of
bankruptey, bringing the attention of the financial markets
to the electric power industry (Liu ef al., 2007). Therefore,
how to effectively make an accurate assessment on the
price of volatility risk in electricity market has become an
urgent and important problem.

Value-at-Risk (VaR) 15 a risk maenagement tool to
quantify the level of risk exposure in advance. With VaR
as the risk measure, the purchasing risk of electric utility
is calculated using a normal distribution based Delta
model (Zhang and Zhou, 2004.). A copula based method
to estimate the VaR of electric utility has been proposed,
in which the fluctuating properties and correlation of load
and electricity price, respectively described by normal
distribution and copula function (Zhong and Li, 2007).
The trading risk in energy markets has been dealt with by
GARCH based variance-covariance approaches, showing
that GARCH with normal distribution errors (N-GARCH)
underestimates the actual risk during the sample period
(Sadegli and Shavvalpour, 2006). Considering that
N-GARCH cannot effectively address the skewness and
kurtosis in the data of profit and loss, a resampling
method based on a bias-correction step and the bootstrap
has been developed, further mmproving the VaR
forecasting accuracy of the N-GARCH model (Hartz et al.,
2006). By introducing fatter-tail fractal distribution to
describe the distribution of spot and future prices, the
optimal strategies of electric purchase portfolio for power
distribution companies have been constructed on the
basis of traditional invest portfolio model (Wang et al.,
2009). By utilizing system surplus capacity percent, a
hybrid method combining Monte-Carlo simulation and

2436



J. Applied Sci., 13 (13): 2436-2442, 2013

random sampling with replacement is used to evaluate the
trading risk faced by an electric utility based on the
historical data of Zhejiang electricity market, avoiding the
distribution assumption on electricity prices but its
estimating accuracy critically depends on the typicality of
selected sample (Zhou ef al., 2004). With electricity
applications n mind, the VaR calculating model that
accommodates autoregression and weekly seasonalities
in both the conditional mean and volatility of returns, as
well as leverage effects via an EGARCH specification is
proposed, in which extreme value theory (EVT) is adopted
to explicitly model the tails of the return distribution.
Compared to the parametric models and simple historical
simulation methods, the proposed EVT-based evaluating
model performs well in forecasting out-of-sample VaR
(Chan and Gray, 2006, Gong et al., 2009). With EGARCH-
based model, the impacts of distribution assumption on
VaR estimation accuracy are analyzed for three
mmovation’s distributions: normal, student-t and General
Error Distribution (GED). The numerical example based on
the historical data of the PIM market shows that the
model with GED performs better in predicting VaR
(Wang et al, 2012).

Li and Sun (2010) have explored the risk in
assumption of distribution for innovations by comparing
the estimated accuracy of Delta-Gamma-Cormsh-Fisher
and Delta-normal model, showing that the selection of
mnovation probability distribution plays very important
role for the validity and stability of VaR estimates. Up to
now electric power energy cannot be stored economically
and therefore demand for electric power energy has an
untempered effect on electricity prices, exhibiting special
features: mean reversion, seasonality, heteroscedasticity,
skewness, lepkurtosis and extreme fast-reverting spikes.
Incorporating the pricing dynamics of electricity is of vital
importance in price of volatility risk assessment for all
market participants for their swrvival under deregulated
enviromment. In this study, with load as an exogenous
explanatory variable, a model to estimate VaR via a
GARCH specification (GARCH-VaR) 15 proposed, in
which the features of electricity prices-seasonalities,
heteroscedasticities, skewnesses and lepkurtosises can
be jointly addressed. A comparative analysis have been
made on the estimated results for normal, student-t and
skewed student-t GARCH-VaR models to evaluate the
impacts of probability distribution assumption and the
time-varying features of the model parameters on the
accuracy of VaR estimates. The numerical example based
on the historical data of the PIM electricity market
shows that the skewed student-t GARCH-VaR model with
time-varying parameters performs better in predicting

one-period-ahead VaR but the one with Gaussian
distribution underestimates the GARCH-VaR quantiles
below the 5% significance level and the one with
student-t distribution overestimates the quantiles above
the 2.53% significance level. These results present several
potential implications for electricity markets risk
quantifications and hedging strategies.

VaR ESTIMATION MODEL

Value-at-Risk (VaR) 1s one of the most intuitive and
comprehensible risk measures. VaR puts a monetary value
on the risk that arises from holding an asset. Assuming
normal markets and no trading in a given portfolio, VaR is
defined as a threshold value such that the probability that
the worst loss on the portfolio over a target horizon
exceeds this value is the given probability level. The VaR
of the portfolio with a confidence interval ¢ is:

ViR, =inf{x < R|Prob(AP > x) <1 -c] Y]

where, Prob(.) denotes the portfolio probability
distribution and AP the portfolio losses over the given
holding periad.

For a given time horizon t, suppose that the system
demand for electricity 18 @, the retail price to ultimate
customers is P, the spot price is p, =p, +&, where p, is
the expected price and ¢, 1s the random shock. The trading
losses of an electric utility over the target horizon t is:

AP, = Q,(p,~B) = Q(p, P, +5,) 2)

Let Q, and P, be constant, F,(x[I,,) be the cumulative
distribution function of &, conditional on the information
set I, available at time t-1. The VaR of an electric utility in
the specified period t with the pre-assigned probability
level ¢, denoted by VaR_, 1s:

1—c=Prob (AP, > VaR_,}
=Prob (Q,(p,-F +¢)=VaR )

- Prob {Et Va’Rc,t - Qt(pt - Pﬂ)}
Q, €))
= [ta, AR
— R
Q
1-F VaR., @, -P)I
==k —— (P~ 11
QL a 1
Now we cobtain:
ViR ,, = Q,(p, — P +F' (el I,.). )
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where, F,™' is the quantile function defined as the inverse
of the distribution function F,. Therefore, calculating VaR
does require some knowledge of the underlying asset
distribution.

GARCH-VaR model: The seasonality in the electricity
spot market 15 particularly obvious over the day and over
the week. We therefore include a general formulation for
sinusoidal function in the model to capture the possibility
of having many cycles per year. Assuming that p, d, €
and z denote the electricity spot price, the system load,
the random shock and the normalized irmovation at time
t, h, denotes the conditional variance of g, then the
GARCH model depicting the changing rule of electricity
spot price at time t can be formulated as follows:

pt = pt + E‘t

p. = £ +v(B)d; +oB)p, +k(B)z,

f(t) = oy +od, +i0°u sin Z—NH%
Fr? 365

¥(B} = % +¥B+ 1B+ +v,B" (%)
¢(B) = ¢B+¢,B* +@R’+ _+¢B”
kB)=1+kB+kB’ +. . +kB*

g, = Nz, 2,1, ~D{0, 1)
Y £

h, =B, +2[31th +2E’Zieii
i=1 i=1

where, B is the backshift operator, dg, i3 a dummy
variable that takes a value of 1 if the observation is in
weekday and zero otherwise;, u, v and q, respectively
denote the lagged orders of d? p, and ¢, in the mean
equation; 1, and s, denote the lagged order of h, and ¢/ in
the conditional variance equation; m is the number of
changing cycles of electricity price series per vear, the
amplitude and location of the peak can be, respectively
captured by o™ = (¢, ) and o¥ = (e, Coml
o = (0, &y, 0, @), B =Pus Biisws P Psudy ¥ = (¥ -
Vo) @ = (@, ©), K=(K,..., k) and 0 = (B,,..., 0)) are
the parameters to be estimated.

Given F,(x[1,,), the conditional distribution function of
standardized mmovation z, and using Eq. 4, the VaR of the
electric utility over the target horizon t with the
confidential level ¢, VaR,,, is defined as:

ViR, = Q,(p, ~ By + I E (e[ 1)), (6)

Residuals distribution assumption: Before parameters
calibration, assumption on the distribution of random
errors needs to be made. In order to effectively depict the
kurtosis and fat-tail of electricity price, we assume that the
Probability Density Function (PDF) for the standardized

innovation z, a white nose process with zero mean and
constant variance equal to 1, is consistent with skewed
student-t probability distribution. The PDF of skewed
student-t distribution can be expressed as:

o+
1 (bx+a, ) |°
n, -2 1A,
J[l-k)ut,vxz—atfbL
1+, vx<-a, /b,
(7)

a, = 4?%(:‘[1]‘ _ZJ
n, -1

b,=1+3A7 -2}

fix|I )= btct[l +

1+h, =

1

o - 1 [ntﬂ}
boJam -2rm /) | 2

where, I'(.) is a Gamma function, A, and ), are the
conditional skewness and degree of freedom of skewed
student-t distribution. If we denote the upper and lower
limits of conditional degree of freedom by U, and L, the
upper and lower limits of conditional skewness by U, and
L,, we can rewrite A, and 1), as:

u -L

n =L, + . !

1+ exp(—wt)

Iy L M
o =& + ZSMEH +282i23ﬂ +2831mm

i=1 i=1 i=1 (8)
A =1L, LY Tl N

1+exp(-p,)

n N -
_ 3
o= T b TR, P TE YT
i=1 i=1 i=1

where, 8=(80. 8, .8, .8, .8, . 8y 8y ) and
T= (Toﬁns'”sTuk,sz T Te 2 Tals '”,’53“) are the estimated
parameters; 1., s, and v, are the lagged orders of ¢, €/, and
w, 1n the equation of conditional degree of freedom; 1, s,
and v, are the lagged orders of ¢, €, and p, in the equation
of conditional skewness. When 4,=0, the skewed student-
t distribution degenerates to student-t distribution.

Model estimation method: Now there have been various
estimation methods for the parameters of the GARCH-VaR
model, Gebizlioglu ef al. (2011) have shown that the
Maximum Likelihood Estimator (MLE) performs better for
the large samples. Along this line, we estimate the
parameters of the proposed forecasting models by
maximizing conditional log-likelihood function under
different assumption for probability
distribution.

LetE=(a, v, @, & P, v, t), the log-likelihood function
for all observations corresponding to z, a random variable
with skewed-t distribution, 1s:

residuals’
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T+

- o be, 1 bz, +a, K 9
L(&)fz{lt(&)fz{ In JH[HWZ[ ey N )

where, L,(&=Inf, (z |1} 1s the log-likelthood function for
one observation at period t, T is the sample volume. By
maximizing L(E), £ the estimated values of parameters £
can be obtamed. It 13 important to note that the
log-likelihood function L(E) is highly nonlinear. The
starting values of parameters £ must be selected with care.
In order to improve the accuracy of estimation, a
successive approximation method, namely using the
parameters estimated from simpler models as starting
values for more complex one, is used in this study.

Backtesting for VaR estimates: It 1s of crucial importance
to assess the accuracy of VaR estimates, as they are only
useful insofar as they accurately characterize risk.
Backtesting or verification testing is the way that we
verify whether projected losses are m line with actual
losses. The most widely known backtesting method based
on failure rates has been suggested by Kupiec (1995).
Kupiec’s test measures whether the number of violation
exceptions (losses larger than estimated VaR) is in line
with the expected number for the chosen confidence
interval. Denoting the number of times that the actual
portfolio returns fall outside the VaR estimate as N and
the total number of observations as T, we may define the
number of violation exceptions as:

N:ilt(APt > VaR,,), (10)

t=l

where, I() 1s an indicator function. Under the null
hypothesis that the VaR estimated model is correct at a
pre-assigned confidence mterval, the munber of violation
exceptions N should follow a bmomial probability
distribution:

P(N|T, 00} = {;Ja”(l o)™, (11)

where, T is the sample size and ¢ corresponding to the
significance level chosen for the VaR approach. If the
sample size T 1s nput and ¢ 13 set to one minus the level
of confidence, the binomial function produces the
likelihood that a specific number of VaR breaks is to
oceur.

The observed failure rate N/I should act as an
unbiased measure of ¢ = 1-¢ as sample size is increased.
Assuming that the proposed model is accurate, the
following Likelihood-Ratio (LR):

(1 - C)N ¢ (1 2)

is asymptotically y° (chi-squared) distributed with one
degree of freedom. If the value of LR exceeds the critical
value of the ¥’ distribution, the null hypothesis will be
rejected and the model 15 deemed as naccurate. On the
contrary, the null hypothesis will be accepted and the
model should be considered correct.

EMPIEICAL RESULT

The PIM is organized as a day-ahead market.
Participants submit their buying and selling bid curves for
each of the next 24 h. Then the market operator
aggregates bids for each hour and determines market
clearing prices and volumes for each hour of the following
day. In this study, a total of 1197 observations of average
daily electricity spot prices m dollars per megawatt hour
($/MWh) and average daily loads in gigawatt (Gw) are
employed to validate the performance of the VaR
calculating model. The sample period begins on 1st June
2007 and ends on 9th September 2010. As shown in
Fig. 1.

Table 1 presents some descriptive statistics for the
average daily electricity spot price and load series. Tt can
be seen from Table 1 that electricity prices and loads are
highly non-normal, clearly
rightward and with a median well below the mean. Tn fact
the nulls of normality of electricity price and load series
are rejected with the Jarque-Bera test. This is typical of
electricity spot prices in a competitive market.

quite volatile, skewed
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Days

Fig. 1: Average daily electricity spot prices in the PIM
electricity market
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Table 1: Descriptive statistics of the sample

Table 3: Backtesting results of VaR estimates

Statistics Price ($MWh) Load (GW) Percentage  Exception  Normal  t Var. FD.  Var. FD.SK.
Mean 53.520410 81.192210 20 Expected 120 120 120 120
Median 49970680 79.892210 Real 115 94 82 116
Maximum 189.655700 115.783900 LR 0.2075 6.570%*  14.67%%* 01283
Minirmnurm 24.874940 58.345860 95 Expecteds 60 60 50 60
Std. Dev. 20.201580 10.505600 Real 63 43 37 54
Skewness 1.420081 0.375318 LR 0.1717  5.513%*  10.56%F* 0.6214
lepkurtosis 6.591366 2.582759 97.5 Expected 30 a0 30 30
Jarque-Bera 1046. 748000 36.785060 Real 42 20 18 20
p-value 0.000000 0.000000 1R 4.449%%  3.816" 5.672%% 0.0296
99 Expected 12 12 12 12

Table 2: Parameters estimates of GARCH-VaR model Real 22 12 10 9

Normal t Var. FD. Var. FD.SK. LR 6.805%%* (.001 0.3469 0.8142
e 1.2830## * 0,93+ 5 0.7806%* 0.8630%** 99.5 Expected 6 6 6 6
e -2.6623H#* =200 Tk -1.8039%** -1.7840 % *#* Real 18 6 7 6
Yo 0.0070%#* 0.0065%# 0.0063 % * 0.0062 %** LR 15.73%%% 0,000 0.1640 0.000
i -0.0068""* -0.0063 "+ -0.0061"** -0.0061 *** i R gnd kERn - regpectively indicate statistical significance of
Py 0.9868"* 0.9841 4+ 0.98204#* 0.9844 4 # estimated parameters at 90, 95 and 99% confidence interval “Normal”
2 -0.244 7% 0.3053%# 0.3155%%* 0.2026%** denotes normmal distribution; “t” student-t; “Var. FD.” t with time-varying
o2 3.5105 277.3000%** 277.5900%** 281.9700%** degree of freedom; “Var. FD. SK.” skewed-t with time-varying skewness
ma  -01933EE L0 ]519F% 013734 -0.1315%# and degree of freedom
tag -51.7760% * -323.7900%#* -323.3500%#* -322.8200%**
g -0, 15838 * 0.1025:# 0.0886%* -0.0783%* . .
g 10.7870%%%  _]8.0950*** J181080%%%  _109.2600%%+ monthly, quarterly and semi-annual cycles m the sample
it 0-1640’:;:* '0-1056I:* '0-0996::** '0-1154::* periods. Secondly, the t-statistic for ¢, is significant at the
z?i g;gggw* l_g:?gg** lgﬁ:ﬁ*** 1_3:;%28*** 99% confidence level, suggesting that the impacts of load
Gpe 2L3460%HF 817230%F%  LA450%FE _8]1.0TG0*H* on the average daily electricity prices for weekday and
s -1.0GGGTT 0.9821%x* 0.9759%+x 0.9734 4w weekend are more different. Thirdly, volatility 1s found to
a5 14,04 7% -9 T3ROH#k -9 TS T -9, 8860 % * . . .. -
- 0,281 3%%# 02724 L0.265THH* 0.3050% be persistent since the coefficient of lagged volatility, By,
¥ -0.2624 4+ -0.25204+% -0.2383%*+ -0.2355 % is positive and significant at the 99% confidence level,
Ky -OLETSEE 01527 0.1781%## -0.1750%# SRR " - - -
o 02388+ 0.2750% 0.2537% 0270w 11'1d10.at.u'1g hlgh.COI'ldltIOIlal variance 1s leleed by high
By 0.8011### 0.8330%## 0.8228%++ 0.8421 #++ conditional variance. Fourthly, the t-statistics of B,,, §,,,
B 02101k 0.1722%% 0.2140%* 0.1786%** are significant at 95% confidence interval, indicating that
&g 5.597] ks -1.2305%* -(0,8825 T s .
by 01850+ 02070+ the volatility of conditional variance, degree of freedom
o 0.0046%4% -0.003 7%+ will be strengthened by external shocks. Specifically, the
Bay OAdq17ee g-f;iﬁ::* degree of freedom mamfests obviously time-varying
ETI 00377 features, since the coefficients &,, &, and &, are
Tai 0.0003 significant.
T3 0.6119%**
Am sk oand kR prespectively  indicate statistical significance of

estimated parameters at 90, 95 and 99% confidence interval. “Normal”
denotes normmal distribution; “£° student-t; *Var. FD.” t with time-varying
degree of freedom; “Var. FD. SK.” skewed-t with time-varying skewness
and degree of fireedom

Estimates of GARCH-VaR model: Analyzing the
correlation coefficient, the partial correlation coefficient
and the time changing trend chart of the sample data, the
values of m, u, v, Q. 1y, 8, T, 8, Vi, Ty, 83, v, in the GARCH
model can be 1dentified. In our situation, they are equal to
52,1,1,3,1,1,1,1,1, 1,1, 1. Table 2 shows the results of
the maximum likelithood estimation for the proposed
GARCH model

Analyzing the data in Table 2, we can draw the
following conclusions: Firstly, concerning the mean
equation, the t-statistics of «,, a,, Vi€(2.4.612,24,52),
associated to the seasonal effects, are significant at the
93% confidence interval, showing that there exist weekly,

VaR backtesting: Without loss of generality, in this
study we assume that an electric utility has the obligation
to serve 1MW of load 24 hours a day and the retail price
has been frozen at a level equivalent to O$/MWh. The
Kupiec’s test results are shown in Table 3. It can be seen
from Table 3 that the model with normal distribution
underestimates the quantiles below the 5% significance
level and that the one with student-t distribution
overestimates the quantiles above the 2.5% significance
level whereas the null hypothesis cammot be rejected for
the skewed student-t GARCH-VaR model with time-
varying skewness and degree of freedom m each
signficance level. Summarizing the results for the
Kupiec’s test, our method is able to improve the VaR
forecasts so much that VaR predictions are obtained
which are insignificantly different from the proposed

downfall probability.

2440



J. Applied Sci., 13 (13): 2436-2442, 2013

0.020

<

=

=

w
1

0.010 4

Probability density

0.005

0.000 T T T 1
2.5 3.0 35 4.0 4.5

Standardised innovations (S/Muh)

Fig. 2: Right tails of probability density functions for t,
Var FD. and Var FD.SK.

Figure 2 shows the right tails of probability density
function for t distribution, t distribution with time-varying
degree of freedom and skewed-t distribution with time-
varying skewness and degree of freedom. As can be seen
from Fig. 2 and Table 3, the t distribution with time-
varying degree of freedom has the thinnest right-tail and
the VaR estimate effectiveness 1s the worst, the t
distribution has fatter right tail than the t distribution with
time-varying degree of freedom, the estimate accuracy of
the former 1s better than the latter. In contrast, the
skewed-t distnibution with time-varying skewness and
degree of freedom has the heaviest right tail which can
more effectively portray the kurtosises and fat-tails of
electricity prices, the VaR estimate accuracy 1s also best.

CONCLUSION

The distinctive characteristics of electric energy
which cannot be effectively stored through time and
space and need instantaneous equilibrium of supply and
demand make electricity price present highly volatility and
occasional extreme movements of magnitudes rarely seen
in markets for traditional financial assets, thus price risk
identification, evaluation and management i electricity
market are more important than in traditional markets.
Considering various influencing factors on electricity
prices and their pertinence, a model to estimate VaR viaa
GARCH specification with load as an exogenous
explanatory variable is proposed, in which the
seasonalities, heteroscedasticities, volatility-clustering
and heavy-tails can be jointly addressed. The impacts of
probability distribution assumption and the time-varying

features of parameters on the accuracy of VaR estimation
are analyzed for three immovation’s distributions: normal,
student-t and skewed student-t. The numerical example
based on the historical data of the PIM electricity market
shows:

*  VaR provides participants 1 the electricity market
with a method for easily quantifying their risk
exposure to movements in electric power prices

+ The skewed studentt GARCH-VaR model with
time-varying parameters performs better in estimating
one-period-ahead VaR but the one with normal
distribution underestimates the quantiles below the
5% sigmficance level and the one with student-t
distribution overestimates the quantiles above the
2.5% significance level
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