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Abstract: Researches have shown that in the CS algorithm, the sparse representation is increased with the

mcrease of the number of decomposition layers and dividing the image into blocks can greatly shorten the run
time. Based on the two points, an improved C8 algorithm based on the double single-layer wavelet transform

1s proposed in this paper. After the first layer wavelet decomposition, the high-pass wavelet coefficients are
measured by the single layer wavelet transform CS algorithm and the low-pass wavelet coefficients are

preserved. High-pass wavelet coefficients can be recovered by the measurements by using recovery algorithm.

Then the image can be reconstructed by the inverse wavelet transform. The simulation experiments were
conducted using the Matlab software and three images were chosen as test images. The simulation results

demonstrated that compared with the existing algorithms, the proposed algorithm could greatly shorten the run
time and improve the quality of the reconstructive images. This will allow the proposed algorithm to be used

mn applications m image CS field.
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INTRODUCTION

Shannon-Nyquist sampling theorem demonstrates
that signals can be exactly recovered from a set of
uniformly spaced samples if the sampling rate is at least
twice the bandwidth of the signal of mterest. This basic
principle underlies the majority of signal processing.
with the development of information
technology, the Shannon-Nyquist theorem 15 facing
challenges both on the acquisition hardware and on the
subsequent storage. Compressed Sensing (CS) was
mitiated in 2006 by Donho and Candes, which enables a
potentially large reduction i the sampling and
computation costs by combimng samplng and
compression. Since then, CS has become a key concept in

However,

various areas and an abundance of theoretical aspects
have already been explored.

THE COMPRESSED SENSING THEORY

The key 1dea of CS 1s to recover a sparse signal from
very few no-adaptive, linear measurements by convex
optimization. CS processing consists of the followmg
three parts: (1) Sparse representation: CS builds upon the
fundamental fact that many signals can be represented
using only a few non-zero coefficients i a suitable basis
or dictionary. (2) Sensing: signals are directly sensed ina

compressed way at a lower sampling rate. (3) Recovery
algorithms: signals are recovered by sparse recovery
algorithms after a dimension reduction step.

Let now xeR™ of length N be our signal of interest.
A set {y;}", _, is an orthogonal basis so that x has a
unique representation as a linear combination
of these basis vectors. Let W{y, ..., P} There exist
coefficients {6,}",_, such that:

X=EN1:161Urji (1)

Signal x is k-sparse if @ has at most k nonzeros and ¥ is
the sparse basis. Depending on the signal, a variety of
transformations sparse
representations such as Fourier transform, wavelet

can be used to provide
transform and discrete cosine transform.

Assuming M linear measurements are acquired in
measurement systems. The measurement process can be
expressed as:

y =00 = 0P x = Ax (2)

where, @ 1s an MxN matrix which 1s typically called
sensing matrix, yeR™ and A = ®Y". Throughout this paper
M=N 1s always assumed. The original signal x can be
recovered from measurements y if the sensing matrix @
satisfies Restricted Tsometry Property (RIP). The best
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choices for sensing matrices are random matrices such as
Graussian matrices, Bernoulli matrices, or umform random
ortho-projectors.

Signal recovery processing attempts to recover x
from measurements y by solving an optimization problem
of the form:

mir| ®fi,s.t Ax = ®Px =y (3)

Dual to the unavoidable combinatorial search, this
algorithm 1s NP-hard, thus the closest convex norm 1s
used to substitute the I, norm, which is the 1, norm. This
leads to the following minimization:

min]| @fi, st Ax = OPx =y @

There are various recovery algorithms including
mterior pomt method, Gradient Projection (GP),
Orthogonal  Matching (OMP),
thresholding as well as kinds of improved algorithm.

Pursut iterative

COMPRESSED SENSING BASED ON THE DOUBLE
SINGLE-LAYER WAVELET TRANSFORM

In traditional CS processing based on wavelet
transform, firstly, N x N-dunensional image 1s decomposed
by wavelet transform to get the sparse coefficient matrix,
then all the wavelet coefficients are measured by using
MxN sensing matrices to obtain the M>N measurements.
Finally, the recovery algorithm and inverse wavelet
transform are used to recover the original image.

In the traditional CS algorithm as described above,
the number of layers of wavelet decomposition has an
important impact on the reconstruction results.

Reconstruction effect is enhanced with the increase of
decomposition layer, thus 4-5 or more layers are required
to meet the requirements. Besides, the wavelet transform
divides the mnage into its low and high-frequency
components, the higher frequency components are
sparse, while the lowest frequency components which
provide a coarse scale approximation of the image cannot
be considered to be sparse, so measuring all the
coefficients will destroy the correlation and lead to worse
of the
problems, an mmproved CS algorithm based on the

quality recovered image. To solve these
single layer wavelet transform was proposed in paper,
which only measures the high-pass wavelet coefficients
of the mmage but preserves the low-pass wavelet
coefficients. For the reconstruction, by using the recovery
algorithm, high-pass wavelet coefficients can be
recovered by the measurements. Then the image can be
reconstructed by the nverse wavelet transform. The
algorithm improves the quality of the recovered iumage
significantly.

As already mentioned, the sparse representation is
better if the mumber of decomposition layers increases.
And dividing the image into blocks can greatly shorten
the run time. Based on the above two points, an improved
C8 algorithm based on the double single layer wavelet
transform will be proposed m this study. After the first
layer wavelet decomposition, the high-pass wavelet
coefficients are measured by the single layer wavelet
transform CS algorithm and the low-pass wavelet
coefficients are preserved. Fig. 1 shows the sparse
representation via the double
transform. On one hand double decomposition layers

single-layer wavelet

can improve the quality of reconstructed image; on
the other hand, the second wavelet transform which is

Fig. 1: Sparse representation of cameraman via the double single-layer wavelet transform
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equivalent to the block processing can greatly reduce the
time cost. The algorithm 1s as follows:

*  After a wavelet decomposition of NxN image, four
wavelet sub-band coefficients {LL, LH, HL, HH;}
are obtained

* A second wavelet decomposition 13 used for LH,,
HL.,, HH, and three sets of wavelet
coefficients{L.LH L., ..., LH HH}, {HL LL, ..,
HI. HH,}, {HH LL,, ..,HH HH,} are gained

¢ Selecting the appropriate value of M and let M=N/4
Gaussian random matrix which obeys (0,1/N) be the
sensing matrix. The coefficient matrices can be
obtained after measuring X LH,, X HL, X HH,
(X = LH, HL, HH), while the low-pass coefficients
X LL, of each set are preserved

* By using OMP algorithm, TH,...., LHjﬁHl} ,
{HL:'EHl ..... HL:?IHI} , {HHfﬁHIHHfﬁHl} could be
recovered by the measurements, together with
ILH LL, HL. LL,, HH LL,, three high-pass sub-band
coefficients LH, HL,HH could be reconstructed by
the inverse wavelet transform

¢  Then the image could be reconstructed by the
inverse wavelet transform of LE, HL HHE, and LI,

SIMULATION RESULTS

According to the previous steps, this sumulation
wavelet (db) as wavelet basis,
Gaussian random matrix which obeys (0, 1/N) as sensing
matrix and OMP algorithm as recovery algorithm.

Let Cameraman, Lena, Rice be the test images.
Different values of M were taken to get the different
compression ratios. Since the sensing matrix 1s random,

chose Daubechies

every time the value of M changed, the program would
run three times to obtain the average value as result.
Fig. 2
compression ratios. The average run time of each umage 1s
showed in Table 1.

Simulation results demonstrated that the run time of
the program and the quality of the reconstructive image
had great improvements. The peak signal-to-noise ratio
(PSNR) of the proposed algorithm was improved about
1~2dB and the time cost reduced by 2/3.

shows the simulation results in different

Table 1: Average run time of each image
Average run time (t sec™")

Test image Single layer Double single-layer
Cameraman 46,9385 16.81367
Lena 38.74971 12.03314
Rice 44.95357 15.47929
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Fig. 2(a-c): Simulation results in different compression
ratios, (a) Lena image (b) Cameraman image
and (¢) Rice unage

CONCLUSION

CS5 is an exciting, rapidly growing, field that has

attracted considerable attention. This paper briefly
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introduces the theory of compressed sensing and CS
algorithms. Since the existing compressed sensing
algorithms have its own disadvantages, an improved
image CS algorithm based on the double single-layer
wavelet transform is proposed. According to the
simulation results of test images, the proposed algorithm
can greatly shorten the nn time and improve the quality
of the reconstructive images. This will allow the proposed
algorithm to be used mn applications n 1mage CS field.
Further work can be carried out to research the algorithm
performance of the image with image and promote the use
of CS m practical applications.

REFERENCE

Blumensath, T. and M.E. Davies, 2009. Tterative hard
thresholding for compressed sensing. I. Applied
Comput. Harmon. Anal., 27: 265-274,

Candes, E.J. and Y. Plan, 2011. A probabilistic and RIPless
theory of compressed sensing. IEEE Trans. Inform.
Theory, 57: 7235-7254.

Candes, EJ. and T. Tao, 2005. Decoding by linear
programming. 1EEE  Trans. Inform. Theory,
51: 4203-4215.

Candes, E.J, I Romberg and T. Tao, 2006. Robust
uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. TEEE
Trans. Inform. Theory, 52: 489 -509.

Cen, Y.G., XF. Chen, LH. Cen and SM. Chen, 2010.
Compressed sensing based on the smngle layer
wavelet transform for image processing. . Commun.,
31: 52-55.

Donoho, D.L., 2006. Compressed sensing. TEEE Trans.
Inform. Theory, 52: 1289 -1306.

Duarte, MLF. and Y.C. Eldar, 2011. Structured compressed
sensing: From theory to applications. TEEE Trans.
Signal Process., 59: 4053-4085.

Candes, EJ. and T. Tao, 2006. Near-optimal signal
recovery from random projections:
encoding strategies? TEEE Trans. Inform. Theory,
52: 5406 -5425,

Yu, G. and G. Sapiro, 2011. Statistical compressed sensing
of Gaussian mixture models. TEEE Trans. Signal
Process., 59: 5842-5858.

Figuemredo, MLA.T., R.D. Nowak and S.J. Wright, 2007.
Gradient projection for sparse
Application to compressed sensing and other
inverse problems. TEEE J. Sel. Top. Sign. Proces.,
1: 586 -597.

Jiao, L.C,S.Y. Yan, F. Liuand B. Hou, 201 1. Development
and prospect of compressive sensing. Acta Electron.
Sin., 39: 1651-1662.

Tropp, I.A. and A.C. Gilbert, 2007. Signal recovery from
random measurements via orthogonal matching
pursuit. TEEE Trans. Inform. Theory, 53: 4655 -4666.

Universal

reconstruction:

2482



	JAS.pdf
	Page 1


