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Abstract: This study proposes a hybrid Simulated Annealing with solutions memory (SAM) to solve university
course timetable problems. Simulated Annealing (SA) is one of the popular meta-heuristic algorithms for solving
combinatorial optimization problems. However, SA could get trapped in local optimum, especially when the

temperature becomes very low. In order to escape from this local optimum, this hybrid work tried to jump to

another promising region using not accepted solutions saved in the memory .The computational results tested
on ITC 2007 course timetabling benchmark datasets showed that SAM, can consistently produce good quality
solutions, which are comparable to other approaches tested on ITC 2007 datasets.
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INTRODUCTION

Timetabling is defined as *‘the allocation, subject to
constraints, of given resources to objects being placed n
space-time, in such a way as to satisfy as nearly as
possible a set of desirable objectives” (Wren, 1996). This
work focus on university course tumetabling problem that
assign a set of courses within a given number of rooms
and time periods (McCollum and Ireland, 2006).
Generating a course timetable manually often requires a
lot of time, effort and usually it 1s hard to satisfy all
constraints. Thus, automating the generation of course
timetables is still a challenging task (McCollum and
Treland, 2006).

Many researchers have focused on solving this
problem using meta-heuristics. The “Meta-heuristics are
typically  high-level  strategies which guide an
underlying, problem specific  heuristic, to
icrease their performance” (Blum and Roli, 2003).
Some example of common mela-heuristics approaches are:
ant colony optimization (Eley, 2007), genetic algorithms
(Ueda et al., 2004), tabu search (Alvarez-Valdds et al.,
2002), evolutionary search (Beligiannis et «f., 2008)
and Simulated Ammealing (SA) (Abramson ef al.,, 1999).

more

SA is one of the popular meta-heuristic algorithms
due to its ease of implementation and ability to solve
many combinatorial optimization problems. However, the
disadvantages are that, it could still get trapped m local
optimum and take longer time to find good quality
solutions (Xinchao, 2011). Several researchers have tried
to overcome this drawback. For examples, Azizi et al.
(2009) proposed a hybrid simulated annealing with
evolution-based diversification approach called SAMED
to solve job shop scheduling problem. SAMED
hybridized SA, three types of memories and GA based
crossover compenent. The first two types of memories are
short term memories (tabu list and seed memory list), while
the third type is long term memory. SAMED used short
term memory (tabu list) to temporarily save the accepted
solutions to avoid the recycling; whilst the second short
term memory (seed memory) is to keep track of the best
solutions with lowest objectives functions for further
improvement. The differences between our study with
SAMED 1s m the memory part. We save the unaccepted
solutions to jump to other promising region when the
search got trapped in local optimum, whilst the SAMED
save the best accepted solutions. Gao et af. (2006)
presented a hybrid meta-heuristic algorithm by combined
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the characteristic of simulated annealing, genetic
algorithm and chaos strategy to solve TSP problem. The
experimental results showed that the hybrid meta-heuristic
algorithm (CASAGA) is quite flexible with satisfactory
results.

Kolonko (1999) investigated the cooling schedules
for a wide range of examination timetabling problems and
proposed that, very slow cooling schedule should be
used. Thompson and Dowsland (1995) and Swarnkar and
Tiwari (2004) hybridized SA with tabu search to avoid
revisiting solutions. Jeon and Kim (2004) proposed
UMOSA algorithm that use a strategy called the criterion
scalarizing approach since the probability to accept new
solution must take into account the distance between the
old and the new move. Elmohamed et al. (1998) employed
a simulated annealing with different cooling schedules
(geometric, adaptive and adaptive with reheating). The
experiment results showed that using SA with adaptive
cooling schedules with reheating is able to generate
competitive results comparing with other state-of-the-art
techmques and outperformed other SA approaches.
Therefore, the use of reheating function might be good to
escape from local optimum, whilst the search could revisit
the same local optimum again after several iterations.
Nevertheless, The use of memory to save the not
accepted solutions and reuse one of them when the
search trapped in local optimum could avoid to re-trapped
in the same local optimum again and escape from local
optimum.

This study aims to solve the problem of trapping in
local optimum especially when the temperature in SA are
very low. The low temperature leads SA to accept only
improved solutions. This means more chance to get trap
in local optimum. The question is:

*  How to escape from local optimum, if the search got
trapped in it?

Hybridize the simulated annealing with other
techniques may be a reasonable good answer for the
above question. However, this might not be efficient to
deal with a bad solution structure that leads the search to
get trapped 1n bad local optimum (very hard to escape).
Therefore, this study aims to deal with thus problem by
saving several unaccepted solutions; and to reuse them
when the search got trapped n the local optimum, in order
to jump to other promising region

The contribution of this work 1s to enhance the
performance of SA by escaping from local optimum
using memory by saving non-accepted
solutions and reuse it when the search got trapped in
local optimum.

solutions

263

PROBLEM DESCRIPTION

The Curriculum-based Course Timetabling problem
for the ITC-2007 18 about the scheduling all lectures for a
set of courses into a weekly timetable. Each lecture of a
course must be assigned to periods and rooms in
accordance to a given set of constraints. The employed
method of determining the schedule must be able to
satisty the hard constraints and to minimize the soft
constraints violations. This problem has four hard
constraints H1-H4 and four soft constraints S1-S4 as
follows (Gaspero et al., 2007):

Hard constraints:

H1: Lectures. All lectures of a course must be
scheduled to a distinct periods

H2: Room Occupancy. Any two lectures carmot be
assigned to the same period and the same room

H3: Conflicts. Lectures of courses m the same
curriculum or taught by the same teacher cannot be
schedule in the same period

H4: Availability. If the teacher of a course is not
available at a given period, then no lectures of the
course can be assigned to that period

Soft constraints:

81: Room Capacity. For each lecture, the mumber of
students attending the course should not be greater
than the capacity of the room hosting the lecture

$2: Mimmum Working Days. The lectures of a course
should be spread into the given minimum nmumber of
days

83: Room Stability. All lectures of a course should be
scheduled at the same room. If this is impossible, the
mumber of occupied rooms should be as few as
possible

S4: Curriculum Compactness. For a given curriculum
a violation 18 counted if there i1s one lecture not
adjacent to any other lecture belonging to the same
curriculum within the same day, which means the
agenda of students should be as compact as possible

ALGORITHM

This work is divided into two stages. The first stage
to construct initial solution using constructive
algorithms. At this stage, the feasible initial solution is
constructed by satisfying all hard constraints (H1-H4)
using sequential greedy heuristic as in Lu and Hao (2010).
There is no guarantee that this greedy heuristic can
always find feasible solution. Therefore, we used steepest

i
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decent to search for a feasible solution if the solution still
not feasible. The second stage
constramnts violations. At this stage, we used the
enhanced Simulated Annealing with memory (SAM).

15 to minimize soft

Simulated annealing with memory: SA has been widely
used to solve combinatorial optimization problems. It
accepts the new solution when the objective value 1s
lower than or equals to the current one. There is a
probability to accept worse quality solutions using
probability acceptance criteria:

—af

p(Xy=e ™

This probability function controls the acceptance of
new solution, where Af = f (s*)-f (s), the difference
between the quality of new solution f (s*) and the current
solution f (s). The current temperature, T, is iteratively
reduced according to the cooling schedule with a given
cooling rate « for each iteration or level until this
temperature reaches final mimmum temperature, which 1s
close to Zero, T ;.

When the SA temperature becomes very low, the
SA behaves like descent heuristic (accept only unprove

solution). Thus, the search might easily be trapped in
local optimum. Therefore, this work will save several non-
accepted solutions (Sol,,) in the memory during the search
{(before the non- improvement) and randomly employs one
of these solutions when local optimum 15 met. The
memory size 18 fixed and 1s updated by replacing the worst
solutions in memory with new ones (Fig. 1).

Owr SA algorithm involves: neighborhood structure,
temperature, cooling schedule, termination criteria and
memory.

The algorithm terminates when one of the three cases
OCCUTS:
Case I: The mimmimum temperature T, closed to zero
{(frozen stage) (T, = 0.0001).
Case II: Number of iterations.
Case III: Timeout based on ITC 2007 course
timetabling track 3 stopping
condition.
Let:
»  Sol be an initial solution,
f (Sol) as the quality of Sol,
s Sol* as the best found solution so far;
s Tter as the total iterations number,

Initial solution (Sol)

-Apply the neighborhood structures (N1 and N2).
-Select the best first and second neighbors (Sol*1, Sol*2)

Sol M
Shaking procedure

Fig.1: Proposed schematic representation of SA with memory

Return the best splution

Sol*1

Updete the solution
from memory
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do while (termination criteria does not met)

Add 8ol; to Mem;

Calculate A: =f (Sol))-f (Sol)

Tf A <0 then // improved solution
Sol [Sol;

Sol*| Sol;;
End if
else

Nony ... - Nony,.....

if ( 7 JRAND then
Sol-Sol;;
N‘)“mem,_, =0
else
Add Sol; to Merm;

Generate & neighbors from N neighb orhood structures and calculate the objective function for each neighbor;
assign the best neighbor to Sol, and the second best to Sol;

If f(Sol ¥ [f(Sol]*)//Sol, has better quality than Sol*

+1
Generate a random number called RAND between [0, 11;

Fig. 2. A pseudo-code for SAM

« (C,, as the current iteration,

+ T, as the initial temperature,

* T, as the current temperature,

¢  Nome,.. —as the non-improvement consecutive
iterations,

¢ Mem as the memory that save the not accepted

solution with length p.

The algorithm begins with a given imtial solution.
First, it generates n neighbors from N; neighborhood
structures. The best (Sol") and second (Sol®) (based on
the quality of solutions) are selected. The algorithm
accepts (Sol') if its objective value is less than or equals
the current selution (Sol), whilse (Sol”) will be saved in the
memory (if the memory (Mem) 1s full replace the worst
solution in Mem with (Sol’). In case (Sol") if (Sol) (i.e., the
quality of Sol' is worse than  Sol), the acceptance
criteria (e"") is applied. If ;7.  generated random
number is between 0 and 1, the Sol' is accepted. Similarly,
the memory Mem is updated with (Sol®). If the algorithm
dees not accept (Sol"), Mem will be updated by
(Sel{Fig. 2).

When the non-improvement consecutive iterations
are met, one solution is randomly selected from the Mem
and a shaking procedure 1s applied on it to produce Sol .
This will divert the search to other solution space, by
randomly swap the highest penalties lecture with other
lectures (free clash), when the difference A between the
solution Sol, and the current solution Sol is less than
Cost, (Eq. 1)

Cost = f(sol) # S 0.1 (1)
Iter

where, Tter is total iterations number, C,,, is the current
iterations, f (Sol) the current cost and Cost, is the cost

range to limit the cost value of Sol,. Lu and Hao (2010)
presented strategy called penalty guided perturbation to
improve the best solution if the search cannot improve it.
They employed the perturbation operator to reconstruct
the obtained local optimum by selecting a number of the
highly-penalized lectures randomly and applies swap or
move. The difference between the proposed shaking
procedure and (Lu and Hao, 2010) is in the ranking
penalties of soft constramt violaton Lu and Hao (2010)
ranked the lectures 1 non-increasing order according to
their total penalties of soft constraint violations (for all
soft constraints penalties). Whilst, the proposed shaking
procedure assign the lectures in non-increasing way
according to each soft constraint penalty independently,
so that almost all lectures with high penalty will be
nvolved m this shaking procedure during the search
space.

Neighborhood structure: One of the important features of
local search algorithim 18 the definition of its
neighborhood (Lu and Hao, 2010). This study use three
neighborhood structures denoted by NS, NS; and NS,.
(Note: - all neighborhoods consider free clash):

NS;: Move one lecture from the current period to
another free position period.

NS,: Randomly swaps two different lectures from
different time slots and rooms.

NS,: Normally the selection mechamsm in
neighborhood  structure happens
(e.g:- select two lectures randomly which belongs
to two different rooms and slots). Thus, the
search may need more tme to reach good
solution. Hence, this study proposed neighborhood

randomly
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Table 1: Soft constraint violation for each period and time slot

Room 1 Room 2 Room 3
DT D1 D2 D3 D4 D3 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 Total penalty
1 0 5 6 30 0 100 0 1 4 2 10 20 0 1 160 339
2 3] 15 10 0 0 2 4 2 30 100 1 0 50 1 03 234
3 10 0 80 10 0 1 20 1 1 1 3 0 0 0 0 127
4 10 1 4 5 2 0 10 0 10 20 6 4 150 1 10 233
5 1 2 8 10 0 20 30 15 0 1 2 2 3] 0 9 106
6 2 3 6 1 8 120 30 40 0 4 0 0 9 0 1 224
Table 2: Average penalty costs and CPU time for NS, NS; and NS, neighborhood structures and their combinations over 35 independent runs

N1 N2 N3 N1-N2 N1-N3 N2uN3 N1-N2UN3
Comp  Cost  Time (sec)  Cost  Time (sec)  Cost  Time (sec) Cost  Time (sec)  Cost  Time (sec)  Cost  Time (sec)  Cost  Time (sec)
01 38 40.10 29 40.19 21 100.00 17 70.17 16 88.22 18 90.34 12 82.12
02 187 50.08 175 83.51 140 115.18 129 96.31 127 101.29 135 99.28 90 96.34
03 233 45.20 200 49.29 180 66.15 170 70.14 171 7831 179 63.37 130 71.33
04 167 47.09 159 51.21 139 72.23 118 66.31 117 61.05 122 68.12 89 60.26
05 700 3531 650 45.21 523 59.22 511 42,51 516 54.19 512 55.23 360 51.23
06 185 45.38 174 48.26 157 61.04 153 43.06 156 5825 155 59.45 107 50.75
07 170 31.16 156 43.14 131 43.28 129 39.40 121 36.12 130 43.16 89 41.19
08 173 38.22 162 46.27 129 50.31 122 43.17 123 46.18 129 47.01 93 (13.89

structure to minimize the random selection. In NS.,
the total soft constraints vielations for each timeslot
and sum them up for all days m the week 1s
calculated (Table 1) and the highest penalty timeslot
18 swapped with randomly selected timeslot.

Cooling schedule: The performance of SA depends
heavily on the cooling schedule (Blum and Reli, 2003).
This work used cooling scheme that was proposed by
Lewis (2006) as follow:

Ao = 1-P
h+1=h g

I

T,
Ty =T -2 (ﬁoj

where, P represents a parameter to control a value for A.
The resulting value for 4 is used to influence the amount
of concavity or convexity present in the cooling schedule.
M represents the number of steps taken by temperature
T, to decrease to a value close to zero. In this experiment,
the parameters are set based on the preliminary
experiments, where T; = 1500 and p- -0.99 as in Lewis
(2006) study.

Experiment and result: This study test on 3 datasets
instances categories. The first 4 instances (test 1-4) were
previously used for the old version of the Curriculum-
based Course Timetabling (CB-CTT) in the literature
(Di Gaspero and Schaerf, 2006). The second 7 instances
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(DDS1-DDS7) proposed by Bonutti et al. (2008) and the
third 21 competition instances from The Second
International Timetabling Competition ITC 2007 track 3
{(Gaspero et al., 2007). This work 13 programmed in vb.net
2010 ona PC Windows Vista platform with 2.10 GHz CPU
and 4 GB RAM.

The experiment was first carried out to analyze the
performance of the proposed neighborhood structure
(NS,). Table 2 shows the results of the experiments that
were carried out on the three neighborhoods and their
different combmations. For comparison purpose, this
experiment applied Steepest Descent (SD) with for the first
8 competition instances (Abramson et al, 1999). The
average penalty cost and CPU time over 35 independent
runs 18 reported m Table 2. From Table 2 one clearly finds
that obtain much better quality solution. According to the
results, starting from NS, will decrees the costs and
minimizes the CPU time more than from NS,. This result
had encouraged this study to use this combination in the
enhance SA.

NS,| NS/ NS

Firstly, to make a fair comparison, the basic
SA  applied with  geometric  cooling schedule
(Abramson ef al.,1999) and compare it with the SA with
the adopted cooling schema proposed by Lewis (2006) in
Table 3. The SA with the adopted cooling schema
performed better than the geometric cooling schedule
almost in all instances, whereas geometric cooling
schedule performed better in Comp 5 and Comp 10 but ties
with the adopted cooling schema.
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Table 3: Comparable results between 8As (adopted cooling schema and

geometric cooling schema) average penalties costs over 30 indepe
ndent runs

Adopted cooling schemna Geometric cooling schemna

Comp01 0.7 71
Comp02 56.2 59.3
Comp03 98.3 99.0
Comp®4 67.9 73.2
Comp05 340.6 3394
Comp06 74.0 76.4
Comp07 32.8 33.0
Comp08 66.9 68.6
Comp09 121.5 123.0
Compl0 24.2 24.1
Compll 0.4 0.8

Table 4: Comparison between different numbers of non-Improved iteration
(average value of penalty costs over 25 rung)

10 20 30 40 50
iterations iterations iterations iterations iterations
Non,mmveh
Dataget Ave Best Ave Best Ave  Best Ave  Best Ave Best
Comp 01 1131 10 956 8 710 6 5.0 5 5.0 5
Comp 11 991 7637 4 501 4 000 0 000 O
Comp 05 352.47 345 332.05 325 309.67 302 300.53 293 305.49 294

Table 5: Computational statistics results of the SAM algorithm over 30
independent runs under the ITC 2007 competition stop conditions

Dataset Best Mean Mediam SD Dataset Best Mean Mediam SD
Comp 01 5 50 50 0.0 Compl9? 62 707 71 59
Comp02 35 422 415 57 Comp20 14 17.8 175 29
Comp03 77 813 80.0 35 Comp2l 81 8§78 885 37
Comp04 43 50.7 51.5 3.6 Testl 226 2315 2310 46
Comp05 293 3013 301.0 4.9 Test2 19 236 240 36
Comp06 51 56.7 555 4.6 Test 72 810 820 56
Comp07 15 21.1 21.5 4.1 Testd 80 884 8.5 50
Comp08 46 524 51.0 4.2 DDS1 58 736 750 7.8
Comp09 99 1063 106.0 5.2 DDS2 0 0.0 00 00
Comp 10 6 11.1 11.5 3.6 DDS3 0 0.0 00 00
Comp 11 0 00 0.0 0.0 DDS4 29 347 340 3.8
Comp 12 307 3141 313.5 5.2 DDSS 0 03 00 05
Comp13 71 763 76.0 3.9 DDS6 0 0.6 05 07
Compl4 55 64.6 645 6.6 DDSY 0 0.8 1.0 09
Compl5s 68 75.5 75.0 5.2 Toy 0 0.0 00 00
Compl6 32 425 13.0 6.2

Comp17 61 713 71.0 6.8

Comp 18 70 79.9 785 6.3

Next, this study made preliminary experiments to find
good number non improvement consecutive iterations,
Nong,... . Non, .~ i35 the maximum number of
consecutive iterations that the search 1s allowed to local
optimum. When this number i1s met, the search will
randomly select a solution from the memory (Mem). For
this experiment, Comp 1 and Comp 11 are used to
investigate this parameter. Table 4 showed that in 25 runs

the best Nony,,.. 15 40.

Results under ITC 2007 timeout condition: Table 5
llustrates the computational statistic of the proposed
SAM algorithm based to the following performance
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Table é: Best results and comparison with the best known results under
ITC 2007 timeout condition over 30 indep endent runs

Best known

The proposed approach

Best average time (sec) Results Methods
Comp 01 L 5 160 5 Tabu search
Comp 02 35 42.2 450 24 SAT-modulo-theory
Comp 03 77 81.3 430 66 TLocal search
Comp 04 43 50.7 455 35 Local search
Comp 05 293 3013 400 290 Simulated annealing
Comp 06 51 56.7 390 27 SAT-modulo-theory
Comp 07 15 21.1 400 6 SAT-modulo-theory
Comp 08 46 52.4 300 37 other
Comp 09 99 1063 420 96 Tabu search
Comp 10 6 11.1 440 4 SAT-modulo-theory
Comp 11 0 0 120 0 Tabu search
Comp 12 307 3141 450 300 Simulated annealing
Comp13 71 76.3 424 59 Tabu search
Comp 14 55 64.6 399 51 Mathematical prograrmmirg
Comp 15 68 75.5 443 66 Tabu search
Comple 32 42.5 330 18 SAT-modulo-theory
Comp 17 61 71.3 350 56 SAT-modulo-theory
Comp18 70 79.9 410 62 Hybrid method
Comp 19 62 70.7 461 57 TLocal search
Comp 20 14 17.8 423 4 SAT-modulo-theory
Comp 21 81 87.8 350 75 Simulated annealing
Test 1 226 2315 460 224 Tabu search
Test 2 19 23.6 390 16 Tabu search
Test 3 72 81.0 350 67 Other
Test 4 80 88.4 390 73 Tabu search
DDS1 58 73.6 400 48 SAT-modulo-theory
DDS2 0 0 118 0 Tabu search
DDS3 0 0 126 0 Tabu search
DDS84 29 3.7 450 17 Hybrid methods
DDSS 0 0.3 400 0 Tabu search
DDS6 0 0.6 442 0 SAT-modulo-theory
DDS7 0 0.8 350 0 Tabu search
Tay 0 0 0.4 0 Rimulated annealing

Best results are bold

indicators:- the best penalty cost (Best), the average
penalty costs (Mean), median result (Median) and the
standard deviation over 30 runs.

Results m Table 5 showed that SAM standard
deviation is quite small and the mean penalty results is
small as well.

Table 6 shows the comparison results of SAM with
best known results under ITC 2007 timeout condition
(http:/tabu.diegm uniud.it/et/). The first column indicates
the mstances. Column 2-4 mdicate the penalty of best,
average results and average runs time 1 seconds over 30
runs on each nstance for the SAM. Column 5-6 shows
the penalty cost of the best known results and the
approaches that obtained the best known results.

As shown in Table 6, SAM obtained competitive
results with all best known approaches. For instance
Comp 1, Comp 11, DDS2, DDS3, DDS5, DDS6, DDS7 and
Toy, the optimal solutions are found (under the ITTC 2007
timeout condition). Therefore, this study can conclude
that the SAM algorithm is generally able to produce high
quality solutions when compared to the best known
results.
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Tn the next experimentation, the experiments evaluate
the performance of SAM with other algorithms in
literature (Lu and Hao, 2010, Cesco et al, 2008,
Muller, 2008; Lach and Lubbecke, 2008; Geiger, 2008;
Clark et al, 2008), (M2 to M6) consecutively
(Table 6). Best solutions cost 1s written in bold.

CONCLUSION

This study presented a new hybridization between
simulated annealing with non-accepted solutions memory.
The main idea of the hybrid SAM is to enhance the ability
of escaping from local optimum. SA could be trapped in
local optimum especially when the temperature 1s very
low. When the search trapped m local optimum for a
number of consecutive non-improvement solutions, SAM
randomly select one solution from the memory which was
generated and not-accepted in some recently visited
iterations, to be the current solution . Thus, the search
can jump to other promising region and escape from local
optimum. Whilst, the memory and the proposed shaking
procedure leads the search to avoid recycling and
trapping in the same local optimum.

In this work, the SAM algorithm is evaluated on
curriculum-based course timetabling problem track 3 of
the Second International Timetabling Competition. The
computational results showed that the SAM algorithm
competes very well with reference algorithms and the best
known results m the literature. Thus, the proposed SAM
enhanced the SA performance by enhancing the ability of
escaping from local optimum, which might lead to a good
promising region.

In future works, the next study plan to use tabu list
mechanism to save both not accepted and not visited
solutions in order to avoid recyeling and will test it on in
real world course timetable dataset from Universiti
Kebangsaan Malaysia (Faculty of Engineering case
study).
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