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Abstract: Policy is the core of system-level Dynamic Power Management (DPM). All traditional policies have
their own shortcomings and heavy dependency on specific workload model in terms of effectiveness. In order
to solve the problem in the partially observable environment where the workload model can hardly be predicted,
this paper proposes an online-learming policy based on reinforcement learmng. The policy produces a workload
sequence I. with the historical workload and next interval workload predicted by prediction tree. And we
estimate the value of all pairs composed of the sequence and the time threshold (I.-T) with Q-value based on
the improved Q-learning algorithm. The smallest Q-value 1s chosen for each sequence and the corresponding
time threshold 1s used to be the time threshold to perform time-out policy for the DPM system. Experimental
results show that the proposed policy saves more power consumption range from 3.8% to 31.4%, comparing
with traditional policies, while keeping acceptable performance.
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INTRODUCTION

DPM policy 1s the research emphasis of system-level
dynamic power management. [t determines when spare
parts can tun off or switch to a corresponding low power
state to suit system performance need. The performance
plays a key role in energy utilization. Traditional DPM
policies (Zhao et al., 2008) mainly compose of timeout,
predictive and stochastic model, which rely heavily on a
specific workload model. However, workload 1s often
unpredictable for a complex system due to its dependency
on properties, mput data and user context.

Timeout (Li et al., 1994; Douglis et al., 1995) is the
simplest and most widely used policy, with its obvious
disadvantage slow response m low power state and
workload-model dependency in terms of determination on
delay of the decision-making process. Currently, there are
two main methods of prediction policy: One is the
predicted wake-up technology that activates the
components in advance according to system component’
idle time predicted by strategy (Wang and Wu, 1997); the
other is the predicted turnoff technology which turns
down the components based on the predicted result
(Srivastava et al., 1996). This kind of strategy relies
heavily on the workload model and needs off-line
calculation. Stochastic model policy, using the theory of

probability, abstracts DPM into a stochastic optimization
problem (Norman et al., 2002; Liu ef al., 2009). Workload
optimal results, however, can't be ensured by stochastic
model policy for solving DPM optimization problems. The
complexity of runtime environment makes it difficult to
establish the precise workload model; hence, the solution
of DPM problem is an approximate value. Moreover,
because the models are too complex, we can't calculate 1t
online.

In thus paper, based on Reinforcement Learmng (R1)
{(Sutton and Barto, 1998), we present an online learning
policy to solve the problem that workload model can't be
established precisely. Finally, the method is proved to be
correct and effective.

RL-BASED POLICY MODEL

As shown in Fig. 1, it is a diagram showing a model
of an online DPM policy. System runtime environment is
abstracted mto Service Requestor (SR), Service Queue
(SQ) and Service Provider (SP). Service Requestor (SR),
the workload source of system components, creates
instructions operating on system hardware to generate a
service request when the user or system does some
sending and executing operation. This service does some
sending and executing operation. These service requests
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Fig. 1: Model of online policy
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will be sent to a processing queue designed as a FIFO
(first 1n first out) service queue for system components
and will be cached through services nformation way. The
service processing logic of system components is
abstracted into a service provider. Then, the provider will
get the request of the cache from the service queue
and deal with it. Therefore, the system runtime
environment can be represented as a collection of triples
E =(SR, SQ, SP).

Workload monitor can observe the workload
mformation in runming time and record the nformation
inside the monitor. Workload information observed by
monitor is only a partial result of the system environment.
Workload predictor will receive the discrete workload
mformation from the monitor to predict the workload in
the subsequent moment (Qiu et al., 2007). After that,
workload sequence will be updated according to the
workload we predicted. The action space of RL is a series
of time values. In every decision-making time, RL power
management chooses a time value from the time set on
the basis of workload sequence. The value will serve as a
threshold value for timeout policy which 1s executed by
the policy enforcement module to control the energy
consumption of service provider (system components).
Then RIL power feedback
mformation from the execution results and implements
online updating policy.

management receives

WORKLOAD PREDICTION

Workload sequence: A fimte set of N elements
L = {L, ... L} is used to represent the historical
workload of the system. We denote historical workload
sequence by L and denote L, the system workload at
epoch L.

u

wl @ w3 w2

w0 w2

Fig. 2: Prediction tree

Suppose T, denotes the system 1dle time at epoch 1 and
then I; can be given in the form of Eq. 1 (1<izn, Ty, is
threshold ):

_ {0, when T <T, (1)
1, when T, =T,
For the running worlkload of  system

components, workload has simnilarities over a period
of time. That i1s the workload of components in the
next moment is largely depends on the latest
status. Consequently, when the new
workload 1s predicted, workload sequence will perform
shift and update operation: from 1 = 1, successively make
L., = L, until i = n-1; then store the new workload
prediction in T,

workload

Fundamental structures: In the online policy model,
workload predictor provides incomplete environment
information to R, power management for RT. model to
achieve decision making and updating. This paper uses a
workload-prediction tree based on learning tree algorithm
(Bshouty ef al., 1998). The tree is used for implementing
the workload predictor in RI.-based online policy model.
We can predict the workload status of components mn the
next moment by means of switching the historical
workload of system components monitored by workload
monitor. Figur 2 shows a prediction tree generated by
historical workload sequence L = {L,, L,}.

The sigmficance of each element in Fig. 2 is as
follows:

»  Circle: Decision nodes, a path-matching branch
point of prediction tree, denoted with d;, where 1
correspond to workload point T,; in historical
workload sequence and k indicates that the layer has
k decision points
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¢+  Rectangle: Weight node has a weighted value that
represents the probabilities of which a branch is
selected. We denote it with w, and j indicates the j,,
weight status

+  Solid line: History branches are used for predicting
path-matching

*  Dotted line: It is used for predicting branches and
represents the workload classification of system in
the next moment. A weight node is associated with it.

Prediction tree 1s a hierarchical structure and the
height of the tree does not exceed more than doubling the
length of historical workload sequence. In addition, the i,
layer is corresponding with the workload T, in historical
workload sequence. Each weight node represents the
probabilities of its associated prediction branch which 1s
being selected In other words, it's the workload
prediction probabilities forecasted by prediction-tree in
the next moment. Each weight node in the tree has a
weighted value and tree nodes connect with each other
through branches. However, weight nodes have no
branch and the branches of decision nodes can have only
two types: historical branch and prediction branch. When
L =0, value of L, 18 corresponding with the left branch of
decision node. Otherwise, it is corresponding with right
branch when 1, =1.

Prediction process: When entering a historical workload
sequence 1., a workload prediction process can be
accomplished through matching a path that can reach the
weight nodes. Suppose 1 mdicates the 1, element in
historical workload sequence L; n indicates the length of
the sequence and k indicates the k, decision node in i,
level of the prediction-tree. For L = L, L,, ...... L i, the
prediction process is as follows:

o TLeti=1,k=1
+  Matching historical workload T, from decision node

dy
+ IfL,=0 gotostep (4);,1f L= 1, goto step (5)

If the left branch of decision node d is a history
branch, then we denote the root decision node which 1s
corresponding with the left subtree of decision node d,
by d,,, leti=p, k = q, goto step (2); If the left branch of
decision node dy is a prediction branch, then stop
matching and choose the left prediction branch and
predicted result of the system m the next moment 1s 0.

If the right branch of decision node d is a history
branch, then we denote the root decision node which is
corresponding with the right subtree of decision node d,
by d,. let1=p, k = q, goto step (2); If the right branch of

decision node dy is a prediction branch, then stop
matching and choose the right prediction branch and
predicted result of the system m the next moment 15 1.

Update process: Online policy model has the
capacity for on-line updating when the system is running
and the update is particularly important in workload
prediction. According to the information when the system
18 rumning, by adjusting the value of weight nodes and
splitting the nodes, we can adjust or update the prediction
tree structure to improve the prediction accuracy.

Weight value i prediction tree represents the
probability that a prediction branch is selected i the
process of path matching prediction. When the system
workload prediction is correct, with the purpose of
iumproving the consistency of the same workload
sequence next time, obviously we need increase the
weight value of the selected prediction branches.

Weight node updating: With regard to the update of
weight wvalue, we use a finite state machine for
modeling. The definition of weight finite state machine is
a five-tuple, as shown in Eq. 2:

M=(Q.8.dq,.F) 2)
Among them:
Q {w,...w,} and weight value w; > w;;, 1 =i=n
% = {"Successful  prediction", "Unsuccessful
prediction"}
WO, unsuccessful andi= 0
w,,, unsuccessful and 0<i<n
3w, = :
w,,,, successful and 0<i<n
w_ successful andi=n
gy € Q
F=o

Figure 3 is a state transition diagram for four types of
weight state machine.

Successful prediction

_________ Unsuccessful prediction

Fig. 3: Weight FSM
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Weight node splitting: When the workload prediction
result is faulty, we need to do a downward adjustment for
mispredicted branch weight wvalue. Besides, upward
adjustment and split operation for correctly predicted
branches are needed. The specific operation is as follows:

* Do the downward adjustment for mispredicted
branch value. Adjust the mispredicted branch weight
nodes according to the state transition function
defined in Eq. 2

*  Determine whether the last decision node m the
predicted path can be split or not. If path length 1s
equal to the length of the workload sequence, then
goto step (3) without splitting the prediction tree. Tf
path length 1s less than the length of the workload
sequence, then goto step (4) with node splitting

¢+ Do the upward adjustment for correctly predicted
branches weight node. According to the state
transition function defined in Eq. 2, tum the correct
welght nodes into a higher state

¢ TIncrease the path length. Replace the real predicted
weight node with a new decision node. The decision
node 13 set as default weight node and the weight
value of 1t 1s the state q, defined in Eq. 2

¢ Adjust the weight value of comrectly predicted
branches. For path matching, upward adjustment is
needed for the weight value of cormrect branches.
Then the operations end

REINFORCEMENT LEARNING ALGORITHM

By means of improving the Q-learning algorithm and
combining timeout policy, online policy model implements
the RL power management, which can make updates in
real-time.

In the Q-learning algorithm, for each "action-status”
pair in reinforcement learning model, there is an
associated Q corresponding to it. Q-learning algorithm
doesn't need environment model and we can get an
adaptive policy by optimizing an iterative Q function.
Reference (Watking and Dayan, 1992) has firstly proposed
the Q-leaming algorithm and the Q walue is defined in
Eq 3

Qs )= 1 + 7max,{Q(s..0,) 4, € A} 3

Equation 3 shows the totalize remforcement value
when the model 13 executed according to the optimal
action sequence in state s, r,represents the value system
environment feed back to the learning system at epoch t
and 4 1s a policy discount coefficient. The updating of Q
depend on the action selected by the system.

Traditional Q-learming algorithm does not require a
priori system information. However, i the proposed
online policy model, the workload predictor can provide
historical workload mnformation. Besides, we can know the
status of the service provider model and the timeout
threshold sequence which 13 preestablished. Obviously,
online policy model can provide part of the system
environment information. Based on this information, this
section has improved Q-learning algorithm, to make sure
it can be applied to solve the problem of dynamic power
management.

For RI.-based online policy model, the state space of
model 15 all possible workload sequence L, while the
action space 18 a set of timeout threshold T. Thus we get
a set of pawrs composed of each sequence and each
timeout threshold. Each composed pair has a Q) value
which will be updated during decision process. A two-
dimension Q table 1s formed with all composed pairs and
the corresponding O value. At each decision-making time,
RIL power management update the workload sequence T,
and selects a timeout threshold T, of which the Q) value in
"L-T" pairs is the minimum corresponding to the specific
sequence L., as the threshold for timeout policy. After
performing timeout policy with the selected timeout value
T, we will update the Q value according to Eq. 4 below:

Q(L, T;B) < Q(L, T;0)+ (4)
a[r(L,, T;B)+2Q(L,,,, T ;:B) - Q{L,, T;5)]

where, P represents the consumption and performance
ratio; I, represents the workload sequence generated by
predictor at time t;, T, represents the timeout threshold
used at time t and & represents the learning rate.

Equation 4 shows that the updating of Q for " L,-T,"
at time t is under the influence of the value of Q for " L,,,-
T.," at time t+1.

DPM strategy should not be overly aggressive and
we need to make decisions under the condition of
minimizing the loss of system performance so that the
energy loss can reach the mmimum. Therefore the
feedback value of Q-learming algorithm should contain the
evaluation of system energy consumption and
performance. And the online policy feedback value is
defined m Eq. 5:

R(L,T;B)=pe L. THA-H)p L, T) (3)

In Eq. 5, ¢(L, T) represents the energy consumption
when T 15 used as the time threshold. Analogously,
p (L, T) shown in Eq. 6 represents the performance loss in
the same situation.
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P(L, T) = (14T (6)

In Eq. 6, q represents the munber of pending request
i the service queue and T, represents the average
conversion time in state transition by using T as the time
threshold.

The article defnes the feedback value of Q-learning
algorithm by using a linear combination of the system
energy loss and pending requests in the service queue. Tt
is also reasonable feedback estimation. According to the
experimental results, it shows that the average number of
pending request in service queue 1s proportionate to each
request latency time initiated by service requestor. The
request latency time consist of the time requested for
service queue and execution. Based on that fact, each Q
i "L-T" pair, a weighted value, 1s the combination of the
consumption of system components and delay request.

MODEL DETAIL

Decision epoch: Before implementing the DPM policy, we
first define a series of decision epochs, when the system
makes decisions according to different enviromment. The
decision epochs are as following:

¢ The SP is in idle state and the 5Q is empty

*  The SP 1s inidle state and the SO 1s not empty

*  When the SP is entering the standby state, some
requests from SR has just arrived (The SQ changes
from empty state to not-empty state)

»  When the SP 15 in standby state, some requests from
SQ arrive and they are cached in SQ

At any decision epoch, the PM finds itself in one of
the four conditions. Then it will make a decision according
to different decision epochs and transform the SP to a
corresponding state through the interfaces provided by
device driver. In case (1), the PM will adopt the time-out
policy based on mmproved Q-learning (described below);
In case (2), the PM will activate the SP to handle the
requests cached in SQ, in order to response the SR
quickly. But the PM does not update the Q-learning
algorithm. Both in case (3) and (4), the PM will also
transform the SP to the active state and update the Q-
learning algorithm. During the whole running time of
system, the workload predictor caches the workload
mformation at each decision epoch.

Policy detail: When the PM is in case (1), the workload
predictor transforms the historical workload into the
corresponding workload sequence L and use L to predict
the next interval workload with the help of prediction tree.

Then we get a new workload sequence with the predicted
workload. The PM queries the Q table for the current
workload sequence to choose the corresponding action,
which is a timeout threshold, with mimmum Q value. The
PM performs timeout policy based on the timeout
threshold to manage the SP. The timeout policy based on
improved Q-learning in case (1) 15 as follows:

+  Transform the historical workload into workload
sequence 1, according to equation (1)

*  Predict the next interval workload with prediction tree
and update the sequence L to gain a new workload
sequence

*  Query the Q table for the sequence and choose the
corresponding action with mimmum Q value, which
1s a timeout threshold T

¢ Perform the timeout policy with timeout value T to
transform the SP into the standby state when the idle
time exceeds T

When the PM is in case (3) or in case (4), the SP will
be activated to handle the coming requests. Meanwhile,
the prediction tree and the Q value corresponding to last
action will both be updated according to the time during
which the SP stays standby state. The update algorithm
is as below:

»  If the time during which the SP stays standby state
is larger than the time threshold T,,, the prediction is
correct; Otherwise, prediction is wrong

»  Adjust the branch weight value of prediction tree
according to the update rule of prediction tree in part
3 (workload prediction)

»  Calculate the feedback value of last action with Eq. 5
and Eq. 6

»  Update the Q value with Eq. 4 produced by modified
Q-learning algorithm

EXPERIMENTAL RESULTS

We implement this proposed online learning policy
base on the DPM framework in (Liu et al., 2007) and
performed our experiments using the IDE Hard Disk of the
Hitachi Travel Star 4K40 Laptop. Meanwhile, we compare
owr proposed policy with other policies, such as time-out
policy, predictive policy and stochastic policy. The
experimental results are shown by table 1 below.

Here are some parameters used to compare the
performance of different policies: P (W) is the average
power consumption and the less the better. TS (s) is the
average time keeping standby status and the more the
better. TB (s) 1s the average time keeping 1idle status
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Table 1: Experimental results comparing with other policies

Policy P (W) TS (5) TB (s) N, Ny
Fixed timeout 1.59 0.221 0.316 80 17
(Lietd. (1994)

Adaptive timeout 1.13 0.550 0.900 32 2
(Douglis et al. (1995)

Exponent Average 1.17 0418 0.909 31 9
Algorithm (Wang,

C.H. and Wu, A. (1997)

Renewal process 1.44 0.390 0.328 62 19
Model (Liu et af. (2009)

RL-based 1.09 0.833 0.533 56 1

before transforming to standby status and the less the
better. N, 1s the total transform times. N _is the wrong
transform times and the less the better.

The experimental results show that our proposed
algorithm saves more power consumption range from
3.8-31.4%, comparing with traditional policies, whle
keeping acceptable performance. In addition, the RI.-
based policy has least wrong transformation and quicker
response.

CONCLUSION

This study proposes an online-learning policy based
on remforcement learmng. The policy produces a
workload sequence 1. with the historical workload and
next interval workload predicted by prediction tree. The
reinforcement learning 1s used to update the Q value of all
pairs composed of the sequence L and timeout threshold
(L-T) with Q-learning algorithm. During the interaction
with the system, our policy can find out a proper timeout
value and use it to perform timeout policy for every
workload sequence L. Experimental results show that the
proposed policy outperforms the traditional policies in
saving power consumption while keeping acceptable
performance.
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