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Abstract: This study deals with the dynamic modeling and excitation trajectory optimization of the RB industrial
robot. In the identification, the 6-DOF robot 1s simplified as the first 3-DOF dynamic model to get the complete
dynamic expression and reduced observation matrix and an immune clonal selection algorithm is present to
obtain the optimal excitation trajectory to improve the accuracy of dynamic parameters. Simulations show that
this optimization algorithm is effective and the accuracy of the estimated parameters directly depends on the

selection of excitation trajectory.
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INTRODUCTION

Dynamic identification of industrial robot is often
required to develop advanced control algorithms. The
design of an advanced nonlmear control for industrial
robot 1s usually based on the robot model and its
performance directly depends on the model accuracy.
Robot identification experiment is the only efficient way
to obtain accurate model as well as indications on their
accuracy, confidence and validity which deals with the
problem of estimating the robot model parameters from the
response measured data. Tn general, a standard robot
1dentification procedure consists of modeling, experiment
design, data acquisition, signal processing, parameter
estimation and model validation (Swevers et al., 2007).
Meanwhile, the specially designed experiments are
required to ensure the reliability, accuracy and efficiency
of 1dentification. Thus, 1t 1s essential to consider whether
the excitation is sufficient to provide accurate and fast
parameter estimation in the presence of disturbances such
as measurement noise and actuator disturbances.

Exciting trajectory optimization 1s a very unportant
procedure to excite all the dynamic parameters and
improve the convergence rate and the noise immunity as
the robot identification. Jan Swevers er al. (1997)
proposed a stochastic framework to optunize the
excitation trajectory. Due to the complexity of the
optimization problem, a genetic algorithm is often used
to solve the above optimization problem. Vuong and
Ang Ir (2009) present a genetic algorithm to solve the
trajectory optimization problem. But the genetic algorithm
is easily prone to premature, into a local optimum value.
Therefore, Based on the fact that immune clonal selection
algorithm has better ability both at overall and partial

searching than genetic algorithm, we introduce the
excitation trajectory optimization method based on the
clonal selection algorithm.

Immune Clonal Selection Algorithm (TCSA), is one of
intelligent algorithms that being brought forward from
immune conception and theory in life sciences. It 1s a
excellent parallel and heuristic optimization algorithm
(Campelo et al., 2005; Chun et al., 1997, De Castro and
Von Zuben, 2002) that the clonal selection mechanism of
the immune system is introduced into sunple search
algorithm.

DYNAMIC MODEL OF THE RB ROBOT

An accurate dynamic model 1s important for
model-based control of robot. The RB industrial robot and
its coordinate frames are shown in Fig. 1. The Denavit
Hartenberg parameters of the robot are given in Table 1.

The dynamic model of RB robot can be derived from
the Lagrange-Fuler formulation. Tt is commonly written as:

H(@d +C(q)4 + G == (1

where, «.4.4eR* denotes the position, velocity and
acceleration, respectively, H(q) 18 a symmetric, positive
definite inertia matrix, C{g.q)e R*™ denotes the centrifugal
and Coriolis matrix, G(q)€R, 1s the gravity term and TR,
denotes the torque input vector. In practice, the six
degrees of freedom mdustrial robot dynamics equation 1s
quite complex, so it is not realistic to calculate its complete
expression. Taking into account the special structure of
the robot: Three wrist joints are perpendicular to each
other to mainly adjust the end-effector attitude of the
robot and the dynamic parameter values (including
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Fig. 1({a-b): RB industrial robot (a) The RB industrial robot (b) The D-H Frames

Table 1: D-H parameters for RB robot
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quality, mertia, inertia, ete.) are relatively smaller; while the
previous three links are to achieve the location of the
end-effector and the dynamic parameters are larger, so
nonlinear effect 1s quite sigmficant, especially the gravity
impacts of the second and third joints are particularly
apparent. Therefore, the robot dynamics of the first three
links are only considered in this study and the dynamics
of the wrist joints as external disturbances. Som as to
reduce the computational complexity on the one hand,
on the other hand to reduce the parameters to be
identified which easily obtam relatively accurate dynamic
model.

The dynamics of the first three links of a six-DOF RB
robot can be modeled by:
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The elements of the mass matrix are as the following:
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where, ¢; = coOs(s;, 8 $INQs,  Cp cos(q,tqs),
S35 = sin(gstas), €2y = cos(2q,12qs), 825 = sin(2q,+2q,),
c52; = cos(2,+qs) 8,2, = sin(2,1q,) the acceleration of
gravity.

In order to reduce the system complexity, Eq. 2 can
also be rewritten linearly in terms of the physical
parameters of the system. it is impossible to estimate all
the link dynamic parameter values from the data of link
motions and joint torques or forces since the link dynamic
parameters are redundant to determine the dynamic model
uniquely. So a set of dynamic parameters are called base
dynamic parameters or minimum dynamic parameters
which is sufficient to describe the dynamic behavior of
the mechanical system along with the reduced
observation matrix (Mayeda et al., 1990). Therefore, the
base dynamic parameter in linear form is given as
following:

Table 2: Minimum inertia parameters

Parameters Meaning Unit
0, IlzerIznyrIznyrﬂzzszralz(mﬁmz) kg m?
8, IZxx'IZyy'ﬂzzmz kg m?
85 Ly kg m?
8, Lystagmsrs, kg m*
85 Ly kg m?
B e kg m?
9, Myl agl, kg m
[ Myl kg m
s Lir-lagy kg m?
B1p Ly kg m?
B Lz kg m*
B4 Ly kg m?
O3 Lz kg m’*
B4 Ml kg m
8, Javne ke m
5= ®(q,q, D0 (3)
where, 8 = [6,, 0,--0,]; is the minimum dynamic

parameters vector. These elements in 6 is given in
Table 2. ®@4D {5 gbservation matrix as:

Dy Przs s s
D= Py, O Py (4)
Pars Paz> 5 Pays

where the elements of @ are given 1 Appendix A.
a,=0.1m, a,=0.25m; m,, m,, m, are the masses of link 1,
2, 3, respectively; I, .. I .. I, are the three-axis moments
of mertia for link 1, respectively. I,.. L. 1., are the
three-axis poles of mertia for link 1, respectively.
Iy~ [r. 1, 1] 1s the coordinate expression in the
Department of (Nusawardhana, 2007). Link 2 and 3 are
similar with so.

tyzs Lixz

EXCITATION TRAJECTORY OPTIMIZATION

In order to improve the convergence rate and the
noise immunity of the least squares estimation, the
trajectory used to get observation data must be carefully
selected. Therefore, a persistently exciting trajectory
satisfymng some optimization criteria 1s calculated by some
intelligent algorithms, such as particle swarm optimization
algorithm, genetic algorithm.

The convergence rate and noise immunity of a
parameter identification experiment depend directly
upon the condition number of the persistent excitation
matrix computed from the mverse dynamic model,
since the conditton number represents an upper
limit for mput/output error transmissibility (Gautier and
Khalil, 1992), 1e., the configurations for which
measurements are taken must comrespond to a
well-conditioned reduced observation matrix. Therefore,
we select the following optimization criteria:

7=k cond(®) + k,—— (3)
[}

rain
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where k>0, k>0 are the weighting scalar parameters
representing the relative weights between the condition
number of the observation matrix: cond(®) and its
minimum singular value: 0.

The exciting trajectory is selected as the periodic
trajectory which can be parameterized as a sum of finite
Fourier series (6) and is adopted because of their
advantages in terms of signal processing (Swevers et al.,
1997).

H
q(t)=q, + Za; gin(w,1t) — bi cos(w It}
=
buj
(0= 3 awil cos(w,lt)+ biw,lsin(w, 1) (6)
1=1

gt = i}a; {w Y’ sin(w,It) + b (w,1)’ cos(w,lt)

where w; 1s the fundamental frequency of the excitation
trajectories and should be carefully chosen not to excite
the in-modeled dynamics of the robot. 1 =1, 2,... N, Ceach
Fourier series contains 2N+1parameters. The problem of
finding the optimal trajectory becomes determining the
coefficients {q,.a,.b)) 1 order to mimmize the cost
function (5). Due to the jomt position, velocity,
acceleration of the robot are bounded, the above
optimization problem 18 complex multi-constraint
optimization problem, a good imtial guess for thus
optimization is hard to achieve. Thus, an Immune Clonal
Algorithm 18 proposed to solve the above optimization
problem in this study.

The Clonal selection algorithm (De Castro and
Von Zuben, 2000) takes full advantage of the diversity
mechamsms of the mmmune system and has a very
superior ability of global optimization. So the excitation
trajectory optimization procedure is as follows:

Step 1: Generate a set (P) of candidate solutions,
composed of the subset of memory cells (M) and
the remaining population Pr, 1.e., P = M+Pr
Select the n best individuals of the population
(Pn), based on an affinity measure

Clone these n best mdividuals of the population,
giving rise to a temporary population of clones

Step 2:
Step 3:

(C). The clone size 1s an increasing fimction of
the affimty with the antigen

Submit the population of clones to a
hypermutation scheme, where the hypermutation
1s proportional to the affimty of the antibody
with the antigen. A maturated antibody
population is generated (C*)

Re-select the improved individuals from C* to
compose the memory set M. Some members of P
can be replaced by other improved members of
C*

Step 4:

Step 5:

Step 6: Replace d antibodies by novel ones (diversity
introduction). The lower affinity cells have
higher probabilities of being replaced

Step 7: Return Step 2 to continue the cycle calculation,

until the termination conditions.
SIMULATION

In order to illustrate the validity of the excitation
trajectory optunization based the clonal selection
algorithm (CSA), the simulation on the RB robot dynamics
15 considered. In the simulation, the excitation trajectory
is the desired input signal, the traditional PD control
method is used and the actually required control torque is
calculated according to the robot dynamic model. In
addition, the white Gaussian noise 1s introduced as the
measurement interference signal to verify the robustness
of the identification method.

The optimization constraints are as follows:

¢+ The joint position ranges (rad)y -m<q,<m,
-Tr/18<q,<71/18, -m/d<q,< w/4
¢+ The joint velocity ranges (radfs): -2m<q<2m,

S22, - 2<q,<2n
»  The joint acceleration ranges( rad/s*): —2m<g<2r
2r<i,«<2r s —“2r< <2

Define w;= 2, when N = 1, there are nine optimization
parameters. Set the initial population of 350, good
population of 10 and 200 iterations, the iterative result 1s
shown in Table 3.

In the followmg, The feasibility of the excitation
trajectory optimization is present by the parameter
estimation and model validation and compared with
un-optimized trajectory:

a() =, ()= 4, (1) = sin(21)
(1) =0,(0)= G, (1) = Zcos(21) (7
(D)= ,(0)= G, (1) = ~4sin(21)

Both of the above excitation trajectories are
employed to get the observation data and dynamic
parameters are estimated by the least squares method.
The estimated results are as shown in Table 4. Estimation
1 1s the estimated results by using the un-optimized
trajectory while estimation 2 by using the optimized
trajectory. In order to compere the accuracy of the

Table 3: Trajectory parameters optimization results
Parameters  qyg a! b;! q a’ bj?

Values 0.1658 0.9077 0.4732 0.0806 04594 04917
Parameters gy a,> b,?

Values 0.3140 0.1251 0.4840

Affinity 72.97
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Fig. 2: Model validation

Table 4: Parameters estimation results

Parameters Actual Estimation 1 Estimation 2
8 (kg m?) 1.2804 1.0462 1.2675
8, (kg m?) -0.6508 -0.6516 -0.6232
8; (kg m?) 0.0173 0.0703 0.0348
8 (kgm?) 0.1258 0.1518 0.1220
85 (kg m?) 0.0083 -0.0126 0.0141
8s (kg m?) 0.6957 0.6449 0.9840
8, (kgm) 2.6%43 2.8411 2.6822
8: (kgm) 0.1469 -0.1846 0.0179
8, (kg m?) -0.0125 0.0670 -0.0180
810 (kgm?) 0.0251 0.0147 0.0214
8, (kgm?®) 0.0058 0.0225 0.0070
81> (kgm?) 0.0053 0.0011 0.0050
81;(kgm?®) 0.0768 0.0748 0.0686
B1.(kgm) 0.2752 0.2638 0.2761
8;(kgm) 0.2208 0.2407 0.2253

estimation results, a trajectory different from the excitation
trajectory in identification is planned for model validation:

q, = sin(nt) + cos(rt)
q, = sin(nt) — cos(nt) (8)
q; = sin(7t)

The identification parameter values are substituted
into the robot dynamic model to calculate the estimated
drive torques. In addition, the actual drive torques are
calculated based on the actual parameters. Compared the
actual and estimated drive torque, is to judge the accuracy
of the robot identification parameters. The model
validation results are shown m Fig. 2, we easily see that
the estimation 2 (dash-dotted line) are better than
estimation 1(dotted line) which shows that the dynamic
parameters using optimal trajectory are more accurate than
un-optimal trajectory.

CONCLUSION

In this study, the immune clonal selection algorithm
was used to optimize the excitation trajectory to improve
the accuracy and robustness of the parameters
identification for the RB robot. The first three links
dynamics of the RB robot are only considered, so the
parameters  and  the

minimum  dynamic reduced
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observation matrix are completely obtained. To verify the
optimization results, we present the identification
simulation on the RB robot. The identification results
show that the accuracy of the estimated inertial
parameters directly depends on the selection of efficient
excitation trajectory. The next study 1s the identification
experiments of the RB robot.

APPENDIX
Appendix A. Elements of the observation matrix:

m=q

@, = %53 + 0,082,
Q5= —q;82; —2q,q,¢2,
Py =Sy t ‘ﬁcz

Bs =qyc, — qgs’z

@ =0

o, =2g (qcz ’CI1CI252)

Qg =—2a (q152 _Q1QZ52)

Qs :_%-‘fhczz t4 (qz +q3)522

Po =452, - 24, (q2 + (']3)622

P = (ch +Cl3)523 Jr(qz + C13)2 Cx

M= (tlz + tla)cza 7((:12 Jrc’la)z 823

@;=0

Q=9 (32C3 tac,2 + 231C23)_ 29,9, (3‘253 2.+ 3'1523)
’Ch%(za@za tags; +ays, 22)

@y =4, (3‘253 +ta,s2, + 231523)—2(]1(']2 (3.26322 + 31C23)
— (2a1°23 +a,0; +8,0,2, )

Py =0

P = _Qfszcz

Pz = q12°22

Pz =G5,

Pz =G5,

Py =0,

Py = ‘-:lf3152 -1

P = chzaicz —&s;

Py = ’%2523023

Qopg = qlzczz

Doy = G35

Paz = G5

Pyz =G 4

Do = (2 + % )220, — 8,5 (26, + &)
+ (31523 +ays2, )ql2 86

Py = _(2512 t )3'253 TaC, (2‘12 4 )éh
+ (3'1523 tac,2, ) Chz — 85

Q5 = Gi8nCn

Pap = (ﬁczz

L

Pz =01Co5

oz =G, +;

Qay = Gpa50; + qf (3'1523 a8, ) + q;a.}_s3 +t8cs;

. 2 1 2
Pais = —a208; T4 [ach +Eaz (Ca tea2, )j|+ 2,C5 — 88y

The other elements are zero.
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