——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com




Tournal of Applied Sciences 13 (15): 2891-2896, 2013
ISSN 1812-5654 / DOL: 10.3923/jas.2013.2891.2896
© 2013 Asian Network for Scientific Information

Two Approaches for Coordination of Electric Vehicle Charging and the Comparison
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Abstract: A large population of Electric Vehicles (EVs) will have a sigmificant impact on the power grid if the
charging of EVs is left uncontrolled. It 1s necessary to design optimal charging approach for Evs. In this study,
we propose two optimal approaches for EV charging. They are congestion game-based centralized optimal
approach and learming theory of game-based decentralized optimal approach. The objective of two approaches
1s to mimmize the charging cost of each EV and meanwhile to flatten the total load profile. Under the approach
based on congestion game, the problem of EV charging is described as a congestion game which solves the
problem of EV acceptance that other centralized approaches have. Howerver, when there are high penetration
of EVs, this approach requires significant computational capability. To develop a more practical approach, we
propose the approach based on learming theory of game, where the optimized charging strategies are made
locally and directly by EVs through learming in a repeated process. With the IEEE 33-bus case as the test
systern, results show that both approaches can flatten the total load profile, optimize power losses and improve

voltage regulation effectively compared with the uncoordinated scenario.
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INTRODUCTION

With an
environmental 1ssues and petroleum scarcity, large-scale
use of EVs has been the trend for many countries.
However, the charging of high penetration of EVs will
have a significant impact on the power grid if it 1s left
uncontrolled. This is because that EVs charging
consumes a large amount of electrical energy and this
demand of electrical power can lead to extra large and
undesirable peaks in the electrical consumption (Luis,
2011, Qian et al., 2011; Mowra et of., 2011; Mitra and
Venayagamoorthy, 2010).

A number of studies have been undertaken to control
the charging of EVs which can be divided mto two
categories: centralized optimal approach and decentralized
optimal approach. Centralized approach requires a utility
or system operator to control the charging of EVs whle
decentralized approach means that charging strategies are
determined by EVs.

Many centralized optimal approaches for EV charging
have been proposed. Different centralized optimial
approaches have different objectives, such as to minimize
generation costs (Zhao et al, 2012), power losses
(Clement-Nyns et al., 2010, Deilami ef al., 2011 ) and load
variance (Sortomme et al., 2011), or maximize load factor
(Sortomme ef al., 2011) and supportable EV penetration

increased societal awareness of

level (Richardson et aol., 2012). However, centralized
approach has the defect that EV owners would not like to
accept it. In order to let EV owners obey the grid, fair and
attractive policies need to be made. What's more,
considering large and growing number of EVs m the
future, the centralized approach will ran mto the curse of
dimensionality and needs much more effective solution
agrithom.

On the other hand, so far, few decentralized optimal
approaches for EV charging have been presented.
Ma et al. (2010) proposes a decentralized charging
strategy which is only effective in the case where all EVs
consume the same amount of energy at the same charging
power. Gan et al. (2011) gives two decentralized
algorithms, one synchronous and one asynchronous, of
which the latter is more practical but its the convergence
rate 1s lower and its performance 1s likely to be affected by
communication delays and failures. Vaya and Andersson
(2012) proposes a decentralized scheme based on node
tariff, the amount of calculation of the scheme increases
with the number of nodes in grid.

In this study, two optimal approaches for EV
charging are proposed, one is the centralized optimal
approach based on congestion game and the other is the
decentralized optimal approach based on the learning
theory of game. Firstly, the congestion game model of EV
charging 1s built and the equilibrium solution of the game
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is attained by solving a optimal problem. Because the
solution 15 a Nash equlibrium, each EV would like to
accept it, for no one can get less cost by changing its
charging schedule. However, the approach based on
congestion game belongs to the category of centralized
approach, the computational amounts of which increases
with the increasing mumber of EVs. To develop a more
practical approach, the approach based on learmng theory
of game is proposed, where the optimized charging
strategies are made locally and directly by EVs to minimize
their costs through learning in a repeated process. The
learming model of EV charging 1s built and the solution
procedure is given. Through simulations, the performance
of both approaches are validated and compared.

SYSTEM MODEL

The charging period during a day is evenly divided
into T intervals, the length of each interval is 1 h. It is
assumed that the base load which represents the load of
all electricity consumptions except EV charging, keeps
constant m an interval.

In order to encourage EVs to charge during load
valley, the dynamic charging price 1s proposed in this
study which is modeled as a monotone increasing linear
function of the total load including non-EVs base load
and EVs charging load on the grid The charging price
model 1s given as follows:

{PL =k, (1)

qt :St+1|.

where, t 18 charging mterval, p, 15 the charging price at
mterval t, k 1s price coefficient, q, 1s the total load at
interval t, s, is the total charging load at interval t, 1 is the
base load at interval t.

Based on Eq. 1, the charging cost of EV 1 1s:

c = i‘{ootkqt (2)

t=1
where, w, is the charging power of EV i at interval t.

CENTRALIZED OPTIMAL APPROACH BASED ON
CONGESTION GAME

Basics of congestion game: A congestion game model
(Monderer and Shapley, 1996) can be defined as a tuple

(N E, (S)ia. (©)ecz)-

Where:
N = {1, 2,..., n} denotes the set of player
E = {1, 2,.., r} denotes the set of resource

Each player i has a strategy space S, in which each
specific strategy s,€5, is the set of resource that is S,=2".

The congestion cost of resource e€E 15 determined
by a function ¢{ ) that depends on the congestion level.

The cost of player i under the strategy combination
of s = {s,,..,8,} is:

(:‘(s):zl(:a (ne(s)) (3)

where, n.(s) denotes the number of players using resource
e under the strategy combination of s and 15 called the
congestion level of resource e.

If a congestion game admits a real function @: S—R
(S = %y S with argument of strategy combination and
when any player 1 change its strategy from s, to s°; and the
others’ strategies s_; keep constant, the function always
satisfies the follwing:

sign[q (8,8, )—c (s, 57;)] = sign[rb(s‘, 5, )-@(ss, )] 4

then the congestion game is called a potential game
(Monderer and Shapley, 1996), @ is potential function.

Theorem 1: Every potential game has at least one pure
Nash equilibrium (Monderer and Shapley,
1996)

Theorem 2: When a potential game reach Nash
equilibrium, the potential fuction attains the
minimum (Monderer and Shapley, 1996)

Congestion game model of EV charging: It 15 assumed
that EVs charge at constant power. EV charging can be
described as the following congestion game:

»  The players are N EVs

¢ The resources are T charging intervals t during
charging period, t = {1, 2,..., T}

¢ The strategy of EV i is the set of charging strategy at
every interval s; = {s,,}, s;. only has two values that
“0” means no charging and “1” means charging

Under the strategy combination of s = {s,.., Sy}, the
charging cost of EV 1 1s:

3 (s):gs,,tw‘kqt (s) )

where, w,; is the charging power of EV i, ¢g(s) is the
congestion level of the resource t.

In the game, each EV defines its opimal charging
strategy to minimize its charging cost.
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Existence of the nash equilibrium solution of EV
charging game: The potential function of the EV charging
game model 1s formulated as follows:

O(s)= . ka'(s) (6)

L EEY

The proof of the potential fimction 15 given in
Appendix. It indicates the EV charging game 1s a potential
game. We can then use Theoreml to guarantee the
convergence of the game to a pure Nash equilibrium.

Solution procedure of EV charging game: According to
Theorem 2, the solution of EV charging game can be

attained by solving the following optimazation problem:

¢+ Objective function:

T
in Ykq (7
min ; a
*  Subject to:
N
q,= ESx,L(Dx +lt. (8)
i1
T
A¥s, 0 = (1-s0e)Cy )]
t=1
s, =0orl (10)

where, A is the conversion efficiency of the charger, soc;
is the initial state of charge of EV i, Cp is the battery
capacity. Equation 9 gurantees the battery of every EV to
be full at the end of the charging.

The above optimazation problem can be easily solved
by interior point method combined with branch and
bound method (Boyd and Vandenberghe, 2004). The
solution provides the charging strategies for Evs.
Because the solution is a Nash equilibrium, none of EVs
will change its charging strategy, thus, compared with
other centeralized optimal approaches, this approach can
be accepted willingly by EVs. However, the difficulty of
finding the solution still increases with the increasing
number of EVs.

DECENTRALIZED OPTIMAL APPROACH BASED
ON LEARNING THEORY OF GAME

Here, the approach based on learming theory of game
15 proposed which will not be affected by the number of
EVs. Under this approach, the charging strategy is made

locally and directly by EV and the utility is just as a guider
not a decision maker. EV learns its charging strategy by
iterations.

Learning model of EV charging and the solution:
Different with the congestion game-based approach, the
learming theory of game-based approach assumes that the
charging power of EV at every mterval is variable, the
charging strategy of BV i is the set of the charging power
at every interval.

We assume that the charing power of EVs are
constant n an interval and the output power of the
charger can be adjustable.

The charging power of EV 1 at t in iteration m and m-1
are denoted by s, and s™, EV i revises its strategy
according to the followmng learning algorithm:

S;,tm = Sumil + Bl (bu“H - Sgtm?l) + Bz (gtm1 751,tm71) (1 1 )

where, b™",, is the best reply of EV 1 in iteration m-1, the
§', is average charging power of the other EVs in
iteration m-1. B, and B, are learning parameters.

The implementation process is as follows:

Step 1: Initiahzations. Each EV proposes mitiazed
charging strategy stochasticly whenm =0

Step 2: The utility broadecasts charging price to all Evs.
Each EV solves the following optimization
problem to attain its b™",;:

min ¢ sz (12)
Subject to:
0<b™ <8, (13)
QT) b,™ = (1-s0¢,)Cy (14)
&

where, s, 18 the maximum channg power of EV.
Each BV revises its charging power at every

interval according to Eq. 11 and then reports it to

the utility.

Repeating step 2 until the iteration number

arrives

Step3:

In the above procedure step 1-3, each EV
independently updates its own optimal charging strategy.
The local computational complexity is
independent of the EV population size N.

therefore
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RESULTS AND ANALYSIS

The radial network used for this analysis is the TEEE
33-node test feeder. The total load of the network on peak
is 3715 kW+2265 kVAR. The basevalue of power is
10 MVA and the basevalue of voltage 1s 12.66 kV. The
base load profile 1s a typical day load profile of some
region of guangdong of china in winter of 2010. The
charging period takes place between 20:00 pm to 05:00 am.
The charging period is evenly divided into 10 intervals.
Each interval has a length of 1 h

The total number of the EVs is set to 200 by default
and we assume EVs uniformly distribute at every node.
Half of the EVs have a 32 kW h battery and half have a
16 kW h battery. The initial soc of EV is 0.2 and the
battery of each EV must be full before departure. The
energy conversion efficiency of the charger is 0.9 and the
maximmum output power 18 7 kW. In congestion
game-based approach, EV charges at the constant power
of 7kW.

The price coefficient k is 2x107* yuan kW~ h™'/kW
and the learning parameter B, = 0.05, B, = 0.06.

The congestion game-based approach and the
learning theory of game-based approach are compared
with the free chaging scheme in which the charging
strategy of an EV at an interval 1s defined based on the
electricity price on the previous day.

The variation of the charging power in each mterval
in different scenarios are shown in Fig. 1. It can be seen
from Fig. 1 that in three scenarios, EVs charge at the
mntervals with a lower base load to achieve a low cost.

The variation of the total load in each interval in
different scenarios are shown in Fig. 2. Tt can be seen from
Fig. 2 that in three scenarios, “valley-filling” achieve,
however, under the approaches proposed m this study,

1400 7y Congestion game-based approach
O Learning theory of game-based
1200 4 approach
O Free charging
& 1000 -
) . o
=
2 800
=]
a.
2 600
%ﬂ
5 400 1
200
0- o - - T

20 21 22 23 24 01 02 03 04 05

Interval

Fig. 1: Charging power of EVs in different scenarios

the total load profiles are much flatter while the load
fluctuation brought by the free charging s larger and
there is even a new load peak at 03:00.

The voltage profile of a node in different scenarios
are given in Fig. 3. Node 17 that is at the end point of
the grid feeder 13 choosen as the subject. It can be seen
that the voltage cuts down when EVs charge, free
charging leads to large voltage drop at load peak and two
optimal charging approaches flatten the fluctuation of
voltage.

The power losses during the charging period in three
scenarios are given in Fig. 4. Tt is clear that the free
charging brings larger power losses.

The comparison of the total charging costs of EVs
with different EV numbers in different scenarios is given
in Fig. 5. We can see from Fig. 5 that under two optimal
approaches, EVs will pay the utility almost the same cost,
which are less than that under the free charging scheme.
Furthmore, compared with the free charging scheme, the

3400
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—Learning theory of game-based approach
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£ 2800|.
8 2600 =T —
o] G
‘S 2400} )
= " !
2200| ]
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1800 ! ! ! ! ' ! ! '
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Fig. 2: Load profiles in different scenarios
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Fig. 3: Voltage curves of node 17 i different scenarios
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Fig. 4: Power losses in different scenarios
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Fig. 5: Total charging costs in different scenarios

optimal approaches will get more cost saving when the
number of EV mcreases. When the number of EV 1s 200,
300 and 400, the corresponding saving is 11.53, 18.81 and
24.54%.

CONCLUSION

In this study, we propose two optimal approaches
for electric wvelicle charging. They are congestion
game-based approach and learmng theory of game-based
approach. The objective of two approaches is to minimize
the charging cost of each EV and meanwhile to flatten the
total load profile. The congestion game-based approach
that belongs to the category of centralized approach can
solve the problem of EV acceptance that other centralized
approaches have but it still requries the utility to have
strong calculation capability when the number of EVs 1s
very large. To develop a more practical approach, we
formulate the learning theory of game-based approach
which is scalable to a large EV population. Simulations
results show that the approach based on learming theory
of game can achieve a close performance compared to the

approach based on congestion game. Future works will
focus on the optimal approach of EV charging and
discharging.

APPENDIX

Proof: Because the battery of EV must be full after the end
of the charging when EV changes its strategy, if it will not
charge at one interval, it has to charge at another interval.

We assume that there are k changes when the
charging strategy of EV 1 changes from si to s, and the
other EVs’ strategies keep s, for example that EV changes
from charging at t; to charging at t, means once change.
The charing load at t except EV 1 is denoted by Q..

Comnsidering No. m changes which EV changes from
charging at t, to charging at t,, the changed cost of EV 1 at
t, is:

Ac,, (s)= k(QLl +m +lh)c)‘
The change of potential function of resource t, is:

AD, (5)= k[(Qtl vo 1) - (Q, +1,) } = k{20,Q, + 20], + o})

The changed cost of EV 1 at t, 1s:
Ac,, (3)= —k(Qh +o +1tg)cq
The change of potential function of resource t; 1s:

2

AD, (5) :*[(Qh +oy+1, ) (Qh ol ﬂ: k(20Q, +20], + 0]

So, when EV 1 changes its strategy from charging at
t, to charging at t,, the changed cost of EV i is:

At (s)=h¢,, (5)+Ac, (5)=k{Q, —Q, +1, -1, )o
The change of potential function is:

AD" (5)=AD, (5) +AD, (s)=2K(Q, -Q, +1, -1, )

Thus ag™(s) = 28¢" 5).

Because:
AD(s)= gmyﬂ ()¢, (5)= D ac™ (s)

Therefore, AD{s) = 2Ac(s).
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So:
sign[c(s;, s_)-¢(s7, s_)]. = sign [@(s, s_)-P (87, 5)]
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