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Abstract: Detecting communities from networks 1s one of the important and challenging research topics in
social network analysis, especially from bipartite network. In unipartite network, commumties are usually
represented as sets of nodes within which connections are dense but between which connections are sparse.
However, communities in unipartite networks are not suitable to bipartite network, because there is only
one-to-one correspondence between communities of different types. In this study we propose an algorithm for
detecting communities from bipartite network based onant colony optimization. Present algorithm allows
many-to-many correspondence between communities in different parts. Experimental results demonstrate that
tour algorithm can extract multi-facet communities from bipartite networks and obtain high quality of community

partitioning.
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INTRODUCTION

Various kinds of real-world complex systems could be
modeled as complex networks (Barabasi and Oltvai, 2004),
where nodes (or vertices) represent the objects and
edges represent the interactions among these objects.
An important feature of most of the real world
networks typically is community structure (Barber, 2007,
Broder et al., 2000, Davis et al, 1941). The nodes of
networks can often be divided mto distinct groups, such
that nodes within the same groups are similar to each
other in some sense, whereas nodes from different groups
are dissimnilar.

Communities in unipartite networks are relatively
mndependent in the structure and 1t 15 believed that each
of them may correspond to some fundamental functional
unit or may be similar in some sense. For example, a
community in genetic networks (Dorigo et al., 1996) often
contains genes with similar functions and a community on
the World Wide Web Girvan and Newman (2002) may

correspond to web pages related to similar topics. So
what 1s the defnition of community in bipartite
networks? If we accept the defimittion in umpartite
networks that communities consist of densely linked
nodes, a community in an authors-papers cooperation
network should contam both authors and papers, because
there 1s no edge between authors or study. That 1s to say,
there is only one-to-one correspondence between
author-communities and study-communities, as shown in
Fig. la.

Why should a community contain the different types
of objects? A community in unipartite networks is just the
same type of objects which are similar to each other in
some sense but in real-world bipartite networks are often
more complex than that. The commurities in each part may
gave many-to-many correspondence as shown in Fig. 1b.
For instance, in a researcher-topic network, a group of
researchers in mathematics may have mterest m topic
groups of optimization, combination theory and statistics
and another group of researchers in computer science

Fig. 1(a-b). Commumties in bipartite networks, (a) One-to-one correspondence between different types of communities
and (b) Many-to-many correspondence between different types of communities
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also have interest in those topic groups. Two different
communities inresearcher part correspond to the same set
of communities in the topic part. Sunilarly, two different
communities in the topic part may correspond to the same
set of communities in researcher part. Therefore, if we
adopt a clustering method that ignores the diverse nature
of the human character, 1t would be difficult to find the
common ground among people.

n this study, we propose an algorithm for detecting
community of many-to-many correspondence from
bipartite networks based on ant colony optimization. The
algorithm  transforms the problem of detecting
communities into a combinatorial optimization problem
and allows many-to-many correspondence between
commumities. Experimental results on some real world
social bipartite networks demonstrate that our algorithm
can not only accurately identify the number of
communities of a bipartite network but also obtain higher
quality of commumty detection.

RELATED WORKS

In umpartite networks, communities are often
modeled as sets of nodes within which commections are
dense but between which connections are sparse. To
evaluate the quality of a particular division of a network
mto communities, Newman introduced a qualitative
measure called modularity (Guimera er al., 2007). A
widely wsed and quite successful method for the
identification of communities in unipartite networks is
maximization of a modularity function.

one type at a time. As we know, two node types are
not treated symmetrically. Barber (2007) extends the
definition of Newman’s modularity i umpartite network
to be appropriate for bipartite networks and presents a
bipartite modularity based on the assumption that there 1s
one-to-one  correspondence  between  communities
of different node type. He also proposed an algorithm
called adaptive BRIM for detecting commumity structure
by maximizing this bipartite modularity.

Liu and Murata (2009b) first introduced the label
propagation algorithm for community detection in
unipartite networks. The algorithm first assigns every
node a umque label, then at every step in the iterative
process, each node adopts the label that most of its
neighbors currently have. Finally, densely connected
group of nodes with 1dentical label forms a community.
Long et al. (2007) mnproved the Label Propagation
Algorithm (LPA) and propose a new algorithm to make it
more suitable for bipartite networks. Their algorithm is
ready to be parallelized for real time community analysis
on large-scale bipartite networks. Newman (2006) also

proposed an algorithm called TP and BRIM for community
detection in large-scale bipartite networks. The algorithm
1s a joint strategy of LP and BRIM, which employs LP to
search an mitial division and then use BRIM to find the
final community division.

Porter et al. (2009) extended the k-clique community
detection algorithm for bipartite networks. The algorithm
retains all of the advantages of k-clique algorithm but 1t
avoids discarding important structural information when
performing a one-mode projection of the network. The
algorithm provides a level of flexibility by incorporating
independent clique thresholds for each of the non-
overlapping node sets in the bipartite network.

Radicchi et ol (2004) introduced the link-pattern
based community. A link-pattern based community is a
group of nodes which have the similar link patterns,
ie., the nodes within a community link to other
nodes in similar ways. Unlike the traditional link-dense,
the link-pattern based commumity allows many-to-many
correspondence between different types of commumities
and it is better suited to bipartite networks. As shown in
Fig. 1b, such communities in an author-paper bipartite
network are the way of link-pattern.

In general, finding an exact solution to partitioning
communities is believed to be an NP-hard problem. Ant
colony optimization proposed by Raghavan et al. (2007)
who were mspired by the ants’ foraging behavior 1s a
swarmn intelligence based optimization method which has
been successfully applied to solve the NP-hard problems.
In this paper, we take advantage the strong optimization
ability of ACO to solving the problem of commumty
detection mn bipartite network.

BIPARTITE MODULARITY

Inrecent years, several bipartite modularity measures
which can be applied to identify communities in bipartite
networks are proposed. Guimera’s bipartite modularity
(Lehmann et al., 2008) focuses on the connectivity of only
one type of nodes and Barber’s bipartite moedularity
Liu and Murata (2009a) is based on the assumption that
there is one-to-one correspondence between communities
of different vertex types. Murata’s bipartite modularity
(Long et al, 2007), which gives consistent result as
Newman’s modularity when applied to unipartite
networks, is one-to-many correspondence between
commumities of different vertex types.

Scott and Hughes (1980) advanced a modified
version of Murata’s bipartite modularity, which can reflect
the multi-facet correspondence among communities.
Suzuki’s  bipartite modularity 15 defined as an
accumnulation of pair-wise modularity between different
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types of communities. The pair-wise modularity between
two different types of commumities i1s weighted by
connection density between them in order to reflect the
strength of connection between them. In this study, we
adopt Suzuki’s bipartite modularity to measure the quality
of bipartite network commumty detection.

Community detection in a bipartite  graph
G = (V, E) is to partition its vertexes. V = V'UV", into a
number of subsets v, v, v and v, v;,. v} ., such
that Ve VE v v’

UL VE = VE UL, V=V
4 i

A community is a subset V¥ ar V., where V,*eV* and
Viev', We call Viand V¥ by X-vertex community and
Y-vertex community respectively. Let M be the number of
edges 1n a bipartite network. Suppose the bipartite
network is partitioned into X-vertex communities and
Y-vertex commurties and the numbers of the commuruties
are C* and C7, respectively. Suppose V*cV* and V', V"
are two commurnities, since the vertices in V, and V_ are of
different types, we can define elm and al as follows:

e =% S AG) (1)

iV jevy

It can easily be seen that e, is the fraction of all
edges m the network that connect vertices in commurmty
V7 to vertices in community V,". We further define a
C*xC" matrix E composed of ey, as its (L, m) element and its
row sumimations a; and its column summations a,,;

1 .
alziem:ﬁZZAm) 2
lec® iV ey
1 .
8= Yo =2 Y, M AGD 3)
tec® ey jev ¥

Then Suzuki’s bipartite modularity Q 13 defined as
follows:

Q-3 X G laelaa,) @

¥, mett¥

Here, ligh Q value indicates better commumty
partitioning in a bipartite networl. Taking a closer look at
the expression of Q in Eq. 5, you will find that the value of
the bipartite modularity is not symmetric for the two sides
of vertexes. In Eq. 5, we only define the bipartite
modularity in the V*-V7 direction, which can be denoted
as Q™. Similarly, we can define the bipartite modularity for
the direction of V¥~V

FRAMEWORK OF OUR ALGORITHM

Model formulation: Since finding an exact solution to
partitioming communities is believed to be an NP-hard
problem. To reduce the time complexity, we transform the
problem into the one of combination optimization which
can be solved by ant colony optimization. First, we
construct a model graph, on which the ants search for the
optimal solution. Meanwhile we define the pheromone
and heuristic information according to the topological
structure of the bipartite network. In the algorithm, each
ant chooses its path according to the pheromone and
heuristic information on the edges of the model graph to
construct a solution.

Suppose a bipartite network G = (V, E) 13 composed
of X-vertices and Y-vertices and the numbers of X and
Y-vertices are n and m, respectively. We label X-vertices
with integers 1 to n and Y-vertices with n+l to ntm,
namely V¥ and V' = V'{V,_,,. V,..}. We establish the model
graph for ants foraging as a directed graph. The whole
model graph consists of two parts, which correspond
respectively to the X-vertices Fig. 2a and the of Y-vertices
Fig. 2b in the network.

In the directed model graph, there are n+m+1 nodes: 1,
which represent vertices of bipartite network except the
last one indicting the end of ants” foraging. Between each
pair of neighboring X-vertices, there are n directed edges
and each pair of neighboring Y-vertices is linked by m
directed edges. That 15 to say, an ant can only select the
same type of vertices into a community. For the part of
X-vertices, let the set of directed edges between nodes V,
and V,,, be E= {E , E ,., E}. Each ant chooses its path
according to the pheromone and heuristic information on
each edge. If an ant arrives at node U; and chooses the
edge. E, it means the nodes V, and V, in the bipartite

E
E, E, A "
En E2|2 \ / n2

\Eh

\\Em

Fig. 2(a-b): Model graph for ants searching (a) n directed
edges between neighboring X-vertices and
(b) m directed edges neighboring Y -vertices
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Fig. 3(a-b). An example of a division of a bipartite network, (&) Nodes of the same type are marked in the same color and

{(b) Labeled bipartite network

network are assigned into the same community. We use
a vector S = (S, S,..., Sy Supeen S, to denote the
solution the ant constructed. If the value of component 5,
15k, node V, and node V, in the bipartite network are in the
same temporary community. In the algorithm, each ant
selects a component S, for every node. V,, so, as to
construct the solution vector.

After comstructing the vector 3, we can merge the
temporary communities to obtain the final result. If two
temporary communities have common nodes, then we
merge them mto a larger temporary commumnity. Repeating
this process until there is no temporary communities can
be merged.

For example, Fig. 3a shows a bipartite network and
then we label these nodes as shown in Fig. 3b. Suppose
an ant constructs the solution 3=(3,3,1,5,6,4,8,9,%, 11,
10,14, 14, 12) from the bipartite network in Fig. 3. Then,
the temporary commumities in this selution are as shown
m Fig. 4, where each column indicates a temporary
commuruty. For mstance, the first column n Fig. 4 1s (1, 3),
which means nodes V1 and V3 form a temporary
community.

From Fig. 4, we can see that the eight temporary
communities are (1,3), (2,3),(3,1),(4,5),(5,6),(6,4), (7, 8),
(8,9),(9,8),(10,11), (11,10, (12, 14), (13, 14, (14, 12).
By merging (1, 3) and (2, 3), we get another temporary
sub-community (1, 2, 3). Repeating the process of
merging until we obtain the final solution consisting
of two red-communities: (1, 2, 3), (4, 5, 6) and three
blue-communities: (7, 8, 9), (10, 11)and (12,13, 14).

IMPLEMENTATION OF THE ALGORITHM

solution,
pheremone information T is assigned on each path E,.
The pheromone information influences the choices the
ants in their searching and the larger amount of
pheromone deposited on an edge, the higher probability
an ant will select this edge. Communications and
cooperation between individual ants by pheromone

Pheromone: To construct an effective

5 6 7 8 9 10 11 12 13 14
6 4 8 9 8 11 10 14 14 12

3 3 1 5

Fig. 4: Temporary communities of a solution

informattion enable the ant colony algorithm to have
strong capability of finding the best solutions. Tn our
algorithm, when all ants get their solutions after each
iteration, we update the pheromone on each edge using
the following pheromone updating equation:

o, D = (- p) 7, (1 + 3 At ()

Here, p is the evaporation rate, m is the number of
ants and At is the merement of pheromone laid on edge

(1, 1) by the k-th ant:

Av = { ()
' 0

where, Qg(S) is the bipartite modularity of division
communities constructed by the k-th ant.

if V] = (6)
otherwise

HEURISTIC INFORMATION

In the algorithm, we also define the heuristic
information m; to reflect the potential tendency for the
ants to select the edge E; in the directed model graph. In
the bipartite network, if two nodes v, and v, which of the
same type have larger number directly connected links
with nodes of the other type, they should be in the same
community with a higher probability and the heuristic
function 1; on edge E; will be assigned higher value. The
value of heuristic function is determined as follows:

2,
_ 6 ™
L)

Here, d. is the degree of node v, and C; is the number of
nodes connected with both v; and v;.
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Transition probability: When constructing the solutions,
the ants traverse on the model graph and select a directed
edge at each node by a probabilistic decision. The
transition probability for the k-th ant at the node ui
cheosing the path E; is given by:

o B
i3 i M7

p; = —if i (2)

=
me T N
g=1 0

Here, o and [ are the parameters which control the
relative importance of the pheromone and the heuristic
information. If « assigned a larger value than. B, the
pheromone will have greater influence on the ants’
searching, otherwise the heuristic information will have
greater influence.

Framework of the Algorithm: Suppose the number of
K-vertices in the bipartite networl is n and the number of
Y-vertices 1s m, we label these vertices from 1 to n+m. The
framework of owr algorithm MFCD (Multi-facet
Community Detction) is described in Fig. 5.

EXPERIMENT RESULTS

Southern women network: To venify the accuracy of our
algorithm, we first test on the southern women network

Algorithm MFCD (G.A,0)
Input: G: the bipartite network;
A: the adjacency matrix of G,
Output: S, solution community division;
(Do the modularity of the sohition;
Begin
Initialize the various parameters;
Initialize values of pheromone and heuristic information;
While nat the terminate condition do
For k=1tokdo /*k ants*/
For i =1 to n do / s Xnodes*/
Ant & selects S; according to probability (8);
Endfor i
For i =i+l to n+m do /* m Y-nodes*/
Ant k selects S; according to probability (8);
Endfor i;
Calculate the modularity O of solution S
IT Oz=(0,, s then
Ohes™ Oz Shas™ S
{*0;,.+1s the highest modularity obtained
so far, S, is the best solution obtained so far */
endif
Endfor £,
Update the pheromone on the edges;
End While;
End

Fig. 5: Framework of algorithm MFCD

(Suzuki and Wakita, 2009), which was collected by
Davis et al. (1941) around Mississippi during the 1930s as
part of an extensive study of class and race in the Deep
South. Because the community structure of this network
15 known, this dataset has been widely used by social
network researchers as a benchmark. The network
describes the participation of 18 women in 14 social
events. If a woman attended an event, there will be an
edge linking their nodes.

Firstly, we label the nodes of 18 women as 1-18 and
the nodes of 14 events as 19-32 as shown in Fig. 6a. Then
we use our MFCD algorithm to detect the communities on
southern women network and the experimental result is
shown in Fig. 6b. Nodes assigned in the same community
are marked with a unique color. From Fig. 6b we can see
that six woman-communities and five event-communities
are obtained: {woman 1-7}, {woman 8}, {woman 9},
{woman 10-13}, {woman 16}, {woman 17-18},
{event 19-24} fevent 25}, {event 26}, {event 27, 29},
fevent 28, 30-32}. The bipartite modularity of the result is
0.2367.

We also test the BRIM algorithm proposed by
Baber and the result obtamed i1s shown m Fig. éc.
However there is only one-to-one correspondence
between woman-communities and event-communities. To
indicate the comrespondence relation between different

@
019203QAC15C% Q? OS OQ OlG Ol7 OlBOl@lp 1@13?1@15

NIRRT AR
0,090,098 & ©x @0y 080
(b)

QRS ®® B O 1 @ @& 0 1 213 1415

.,LB‘A.ZJ.“.{Z‘A‘J.‘A‘&“ ZB‘zb \ 2wy
(©
919203_04(33@5 @ .E'lU @&ﬁu@u@m 112

Gt @

137, 145 15

ALY XY

Sao@eof 218 220923024 .2’; ‘2%;7 @@ l28 0.3 R

Fig. 6: Communities of the Southern women bipartite
networl, (a) Numbering bipartite network, 18
yellow circles are 18 women and 16 green circles
are 16 events, (b) Final division obtained by our
MFCD algorithm for optimizing Suzuki-Modularity
and (¢) Fmal division obtamned by BRIM, an
algorithm for optimizing Baber-Modularity
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types of communities, we use the same color on the nodes
assigned on the same community. Partitioning the women
and events in a symmetric marmer as presented by Baber
seems to cause unreasonable groupmg. For example,
women 8 and 16 in the group {8, 16, 17, 18} participate in
both of events 26 and 27 but not in 29 in their
corresponding event set {27, 29%. It 1s obvious that
women 8 and 16 have more tight relation with event set
{26, 27} than {27, 29}.

Present study is  identical to that of
Scott and Hughes (1980), bipartite clustering algorithm
which 1s a simplified variant of Blondel’s algorithm. The
algorithm performs hierarchical clustering and obtains
high quality many to many communities partitioning.
Moreover, our algorithm does not require a predefined
number of communities and can obtain the higher
quality of community partitioning without previously
known parameters.

Divorce in US: As the second example, we test on a
bipartite network of divorce status in the fifty states in
America Watts and Strogatz (1998). The dataset consists
of 50 states m United States and 9 statuses of divorce.
The most notable characteristic of this bipartite
network is that the numbers of nodes in different
types are seriously imbalanced. Firstly, we label the nodes
of 50 states as 1-50 and the nodes of 9 statuses of divorce
as 51-59. Figure 7 shows the commumty structure
depicted by PATEK, which is software for analyzing and
visualizing large networks. From Fig. 7, we can see that
there are obviously three status-commumities: {51%,
{52, 53, 54, 55,56, 57}, {58, 59! but the number of
state-community is not unambiguous. However, we can
confirm that one state-community existing 1s {3, 6,15, 17,
22,23, 25,26, 27, 37}; because these nodes just connect
with the node 51.

If we accept the definition in unipartite networlks that
communities consist of densely linked nodes, that is to

L Pyt
® 2 fl -
- 37 -, ) L !
[ LN T e gl
25 [ =
S\ =
& 57 =k F =
-3 : /" e
L e RS

@ 15 f LA
a2 g
- 3 k!

&b s

say, there is only one-to-one correspondence between
state-communities and status-communities. No matter
what algorithm you use, you can get only one community
from this bipartite network. Such result does not make
any sense and cannot help to analyze the community
structure of the network. For example, we adopt BRIM
algorithm to partition this bipartite network. We obtain
only one community (one status-commuruty and one
state-community). Because the numbers of communities
of both node types have to be equal and this
weaknesses 1s fatal for dividing real-world networks since
the number of commumties of both node types are often
imbalanced.

We use owr algorithm to detect the communities on
this network and three state-communities and three
status-communities are obtained. Careful observation of
the final partitioning communities, one state-community
is §3, 6, 15, 17, 22, 23, 25, 26, 27, 37} and three
status-commumties are {31}, {52, 53, 54, 55, 56, 57%,
{58, 59}. It 18 shown that our algorithm can obtain high
quality of community partitioning and is suitable for the
networks where the numbers of nodes in different types
are greatly imbalanced. Bipartite modularity of the result
18 0.0726 which 1s very small and maybe unreasonable.
The reason is that Sukuzi’s bipartite modularity is not
suitable for bipartite network where the mumber of nodes
1n different types are greatly imbalanced. This problem is
left for our further study on evaluating commumty
structure in bipartite networls.

Scotland corporate interlock: As the third example, we
test on a network of corporate interlocks in Scotland in
the early twentieth century. The data set characterizes 108
Scottish firms during 1904-1905, detailing the corporate
sector, capital and board of directors for each firm. The
dataset includes only those board members who held
multiple directorships, totaling 136 individuals as shown
in Fig. 9.

Fig. 7. Community structure of the network of divorce m us. The red nodes are represented as 50 states in us and the

blue nodes are represented as 9 statuses of divorce
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Fig. 8: Largest component of the network of scotland. The blue nodes represent 86 firms and the red nodes represent

131 directors

Here, we focus on the bipartite network of firms and
directors, with edges existing between each firm and its
board members. Unlike the Southern Women network, the
Scotland corporate interlock network is not connected.
We conduct the experiments on the largest component of
the network contaming 131 directors and 86 firms as
shown in Fig. 8.
the experiment, present algorithm MFCD
divides this largest component of bipartite
mto 16 firm-communities and 22 director-communities
and gets a bipartite modularity 0.4043. The nmumber of
firm-community is not equal to the number of
director-commurty, so the final partitioning commumities,
to some extent, reflects the many-to-many
correspondence  between  firm-communities  and
director-communities.

The experiment of optimizing Baber’s bipartite
modularity 15 also performed. Baber’s method 1s based on
an assumption that there is one-to-one correspondence
between commumities of both vertex types. Baber declares
that if restricting the number of communities being less
than twenty, BRIM algorithm can get the maximum value
of modularity. The number of communities obtained by
our algorithm MFCD approximately agrees with Baber’s
conclusion, the community detecting results and their
modularity are very close. But in contrast to BRIM
algorithm, our algorithm can straightly obtain the number
of communities and the specific division without any prior
knowledge of the network.

In
network

CONCLUSION AND FURTHER WORK

An algorithm for detecting commumties from bipartite
networks based on ant colony optimization 1s presented.
The algorithm firstly transforms the problem of community
detection into the one of combination optimization and
establishes a model graph for the ants’ searching.
Meanwhile we define heuristic information according the

topological structure of the network. Each ant chooses its
path according to the pheromone and heuristic
information on each edge to construct a solution. The
quality of solution obtained by each ant is measured by
its bipartite modularity. Experiment results show that our
algorithm can not only extract multi-facet commumty
structure from bipartite networks but also accurately
identify the number of communities and true community
structure from bipartite network. Since Sukuzi’s bipartite
modularity 1s not swtable for bipartite network where the
number of nodes in different types is great imbalanced,
how to define a proper measurement for evaluating the
multi-facet community part
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