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Abstract: We study pp-1-constacyclic codes over Z, of arbitrary length, where pisaunitin Z. andm=2a
positive mteger, p a prime integer. We first derive the structure of up-1-constacyclic codes over Z,. of length

s Z
p’over £,

= . these codes are then used to classify allpp-1-constacyclic codes over Z,. of arbitrary length. The

generator polynomials of such constacyclic codes of arbitrary length are determined.

Key words: Finite chain ring, constacyclic codes, generater polynomial, constacyelic shift

INTRODUCTION

Cyclic codes are a very inportant class of codes, they
were studied for over fifty years. Cyclic codes were
studied first over the bmary field F2, then were extended
to Fq with g = p’. By viewing a cyclic code C of length n
over a finite field Fq as an ideal of the ring Fq (x)/x™1}, the
structure  of cyclic codes was obtained. After the
discovery that certain good nonlinear binary codes can be
constructed from cyelic codes over Z4 via the Gray map,
codes over finite rings have received much more
attention. Recently, Shixin Zhu and Xiaoshan Kai study
(1+Ap)-constacyclic codes over Z. of arbitrary length,
determine the Hammmg  and  homogeneous
distances of these codes. In thus study, we mvestigate
up-1-constacyclic codes over Z. of arbitrary length.
Usmg the Chinese remainder theorem, we classify all
up-1 -constacyclic codes over Z. of length np® (n is not
divisible by p and s>0 13 an integer. The rest of this study
15 organized as follows. Section 2 gives some notations
and results about constacyclic
commutative chain rings. In section 3, we study the
structure of up-l-constacyclic codes of length p* over
Z. and determine the Hamming distances of all

codes and finite

such constacyclic codes. In section 4, we classify all
up-1-constacyclic codes over Z,. of length np® (n prime
to p) by the Chinese remainder theorem.

BASIC CONCEPTS

In this section, we will review some fundamental
backgrounds used in this study. T.et R be a ring. An ideal
Tof aring R is called principal if it is generated by a single
element. A finite ring R is called a chain ring if all its ideals
are linearly ordered by inclusion. By definition, it can be
verified that all the ideals of the finite chain ring R are
principal. Let R be a finite commutative cham ring with

identity, m 1s the unique maximal ideal of R and let A be the
generater of the unique maximal ideal m, Then m = {\} =

RA, where RA = (A} = {pA|peR}. We have:
R={ADo@h o {42 (1)

The chain in 1 cannot be infinite since R is finite.
Therefore, there exists i, such that A' = 0. Let e is the
minimal number such that A° = 0. The number e is called
the nilpotency index of A. Let F = R/{A; be the residue field
of R with characteristic p, where p is is a prime mumber.
Then |[F| = q = p for some integer r. Let R be a finite
commutative ring with identity. A code over R of length
N is a nonempty subset of R” and a code is linearover R
of length N if it is an R-submoodule of R". For some fixed
unit p of R, the p-constacyclic shift T, on RN is the shift
T, (. ©py vown Gy} = (HCyy, Cp, ... Cyz) A0d a linear code C of
length N over R 1s pu-constacyclic if the code 1s invariant
under the p-constacyclic shuft t,. Note that the R-module
R"is isomorphic to the R-module R (x)/4x"-u}. We identify
a codeword (¢, ¢, .. , ¢y;) with its polynomial
representation ¢ {(x) = ¢;fex + ... + ¢, x"". Then xc (x)
corresponds to the pl-constacyclic shift of ¢ (x) in the ring
R [x]/4x"-p). Thus p-constacyclic codes of length N over
R can be identified as ideals in the ring R (x)/{x"-p). The
following three lemma are well known, they were proof by
Medonald (1958).

Lemma 2.1: Assume the notations given above. For any
aeR there 1s a unique integer I, O<i<e such that ¢ = pi’,
with | as a unit, the unit p is unique module A*.

Lemma 2.2: Let R be a finite commutative chain ring with
identity, its maximal ideal {A}, where A be the generator of
the maximal ideal with nilpotency index m. Let VeR bea
representatives for the equivalence classes of R under
congruence modulo A, Then:
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¢ Forall ¢eR, there are unique o, .
O = Gy At .. T A

s [V[=IH

e [(AY] = |F] for all 0<i<m-1

.., Oy €V such that

From lemma 2.2, we know that any element of Zpm
can be written as a = asta,pt ... +a,,p where the a’s can
be viewed as element of Fp. Tt is well known that a is a
unit if and only if a,#0 in Fp. A polynomial f (x) in R (x) is
said to be a basic irreducible polynomial if its reduction
module p, is irreducible polynomial in Fp (x).

Lemma 2.3: Let R be a fimte commutative ring with
identity. If x-y 1s nilpotent in R, then x 15 a unit 1f and only

if y 15 a umt.

MP-1-CONSTACYCLIC CODES OF LENGTH P*
OVER 7,

In the rest of this study, We denote Z. by R and:
R=R [/ (x" ~ (up- 1))

where, p 18 a unit in R. Mp-1-constacyclic codes of length
p® over R are precisely the ideals of .

Lemma 3.1: The element x + 1 1s milpotent in &.

Proof: In $it we have:
. -1 P
(x+Dp°=x" +1+ Z;Cps X =pu+§Cps X

Since Ci; = 0(modP) for 1 <i<p™1, there exists a pelynomial
f (x) € R [x] such that:
(x +1)F =pp+ pf(x)
Hence:
(e 1" = (pp + pf ()" = (p(u + ()" =0

Thus, x+1 18 mlpotent in K.

Let @: R—f, ® (1) = r (modp) dencte the canonical
reduction map from R to I, the map extends naturally to
map from R [x] to F, [x].

Lemma 3.2: Let a (x) €R. Then:

*  a(x) Can be written as:

a(x)=ag+a (x+l)+az(x+l)2+---+apsil(x+1)

where, a,cR, O<i<p®-1
* a(x)isaumtifand only if @ (a;) # 0

Proof: (1) 1s obvious. (2) Note that a (x) can be expressed
as a (x) = atxt1 q(x) for some q (x)eR. Since (x+1) are
nilpotent in R, 1t follows that (x+1) q (x) 13 mlpotent in K.
Therefore, by lemma 2.3, a (x) is a unit if and only if ©
(ag)# 0.

Lemma 3.3: As a element in $K:
y
p=u Y b, (x+1)
i=1
Proof: In lemma 3.2, we know that:
£ Fo1
(x+D" =x*' +1+ZC‘FSX‘ =pM+ZC;S 'S
Write:
pl .
g(x)=3 c.x
i=1
according to lemma 3.2, g (x) can be written as:
g(x)a, +a, (x+1)+a, (x +1)+....+aps_1 (x+1)
Obviously a, = g(-1), while:
< < gl f
(x+1DF " =xF +1+2C;5 xt
i=l
hence:
p°-1
(x+]) =x+l+g(x)
letx =-1, we get g (-1) =0, then:
g =a(x+1)+a,(x +1)+—~+aps_1(x+l)pt1

and from:

=
v i
(x+1 —py.+gcpsx

we get:
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p=(x+ 1 —g (0= 3 b, + 1y
i=1
here:
boe  =1bj =—aj,l<i< Pl

500

pS
p= Mﬁlzbi x+1
i=1
Lemma 3.4: In % we have:

G P =pp(x)
where p (x) is a unit in $.

Proof: Write:
Pl
g(x)= ; Cps X

According to the proof of lemma 3.1 and lemma 3.3, g (x)
can be written as:

-1
g(x)=py.c (x+1y
in1
s0:
e vl
(x+1F=x" +1+ 3 C x'=p(u+ ye(x+1))
i=1 i=1
by lemma 3.1:
-l
put Yoo (x+1)
o1

is a unit in < since P is a unit in R and the nilpotent index
of x +1 1s mp”.

Theorem 3.1: The ring & is a chain ring with maximal ideal
{x+1} and residue field Fp and the ideals of & are {{x+1)?,

O<i<mp’.

Proof: Let a (x) be any element in R, then according to
lemma 3.2, a(x) can be expressed as a (x) = ag+ (x+1) q (%),
where g (x)eR[x]. f © (a,) =0, thena (x) = mpt+(xt+l) g (x)
for some re®R, by lemma 3.3:

p= M’li‘,b, (x+1)
i=l

hence a (x)=(x+1)h(x) for some h (x) £ ®. This means
a (x) € {x+1). If ® (a,)#0, then a (x) is a unit in {x+1).
Therefore, for any element a (x) of &, either a (x) 13 a umt
or a (x) c{xt+1). According to proposition 2.1 in
(Mcdonald, 1958), ® is a chain ring whose ideals are
{(x+1)) O<i<mp’.

up-1-CONSTACYCLIC CODES OF LENGTH np*
OVER 7.,

In this section, we study pp-1-constacyclic codes of
length N over Z, where N =np® and ged (n, p) =1, s=0
is an integer and p is a prime number. We donate:

R"=2Z_ [ {7 = (up =13}

so pp-l-constacyclic codes of length N over Z, are
precisely the ideals of R”. We introduce the quotient ring;

7 o 0]/ (0" - Qo -1))

which can be obtained from $ by substituting the variable
u for x. For convemence, we still denote 1t by R and
abbreviate Fp as F. There exists a natural R-module
isomorphism @: >R defined by

Ps—l):

Pl
CP(CU,U +eogut ey oo teg e pa?

©0,054,02" Ca 1,080,158, 157 "2 Cat, 1550 g

We have:

s

p -l p-l

p'-1
(p(u(z et ul),zlcqJ uJ,...,Ecn,ZJUJ)
=1 1=1

=1

s

= (MP*1)qu:ps,l=°o,o=°1,o="'=°n,2,ps,1)

this gives that a u-constacyclic shift in $R* corresponds to
a pp-1-constacyclic shift in RY. Thus, (pp-1)-constacyclic
codes of length N over z_. correspond to u-constacyclic
codes over it of length n via the map @. In the following,
we focus on the structure of pp-1-constacyclic codes of
length N over Z,m . We know uconstacyclic codes over
R of length n can be identified as ideals m the ring
¢ [x]Ax"u), so we study the ideals of the ring R [x]/{x"u)
indetail. Define a map ®— F, T = r (mod (utl)). The
map can be extended from M [x] to F [x]. Let
f(x) =ataxtaxt .. ax"c R [x], we have the following
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maps: RIx]1>Fx],f(x) > f(x). A polynomial f (x) in $% [x] is
said to be a basic irreducible polynomial if f(x) is
ureducible mF (x). Two polynomual £ (x), £, (x) € & [x] are
said to be coprime if there exist u, (x), u, (x) € M [x] such
that w, (x), f; Oty (), f; (x) = 1. The following result is
well known cf (Norton and Salagean, 2000).

Lemma 4.1: Let f| (x), f, x)eR[x]. Thent, x) and u, (x),
f, (x) are coprime in ¢ [x] if and only if £ (x) and f,(x) are
coprime in F (x).

The followmg lemma 153 well known as Hensel’s
Lemma (Mcdonald, 1958).

Lemma 4.2: (hensel’s Lemma) Let R be a finite
commutative chain ring with maximal ideal {A} and residue
field F,, (q = p) the nilpotency index of A is e, f be a
polynomial over R, assume f=g,_ g, ..., g. where, g,, ., ...,
g. are pairwise coprime polynomials over F, and f is the
reduction modulo A of f (x). Then there exists
pairwise coprime polynomials £, f,, ..., f, over R such that
t=f,f, . fand fi=¢ forI=1,2, . r

Lemma 4.3: Let f (x) 15 a monic basic irreducible
polynomial over R, then R [x]/f (x)} is a finite chain ring
with residue field ¥, and whose ideals are {@ (A, O<i<m,
where k = deg (f (x)), the map @ dencte the canonical map
R [x] = R [x]Af (x)}. Proof of this lemma can be found in
(Dinh and Lopez-Permouth, 2004).

A finite family (a,)*, of ideals of a commutative R,
such that the canonical homomorphism of R to &* (R/a)
1s an somorphism 1s called a direct decomposition of R.
The next Lemma 1s well-known.

Lemma 4.4: ([21]Proposition 2.4) Let R be a commutative
ring, (a ), a direct decompositionof R and man
R- module. With the notation we have:

¢ There exists a family (a,)r, of idempotents of R such
that ¢, ¢, = O for [#, J:

k

Eeizl

i=1

anda, =R (1-e)forI=12 ...k

»  The submodule m, = ¢; m 18 a complement in m of the
submodule a, m = (1-¢,) m and so the R/a, modules m,
and m/g; m are isomorphic via the map m; my—m/ am,
X—x+ta, m

*  Every submodule N of m 1s a internal direct sum of
submodules N; = ¢; N £ m; which, are isomorphic via
1, with the submodules N;= (a; mte;, NYa, m of
m/am(i=1,2, .., k), BEach N/ is isomorphic to N/a; N.

Conversely, if for every i =1, 2, ., k, N, is a
submodule of m/a; m, then there is a unique
submodule N of m, such that N is 1somorphic with
DN,

Theorem 4.1: The canonical homomorphism:

y R[] —u) - O R[]/ (F, ()

is isomorphism, where f,, f;, ..., f, are pairwise coprime
monic basic irreducible polynomial over & such that
xn-u=ff ... f.

Proof: We know that 3 is a chain ring with maximal ideal
{utl), so x* p=x" +1-(1+u)y=x"+1=x"+1- where, f(x)
1s the reduction module u + 1 of f (x) which 1s a
polynomial over #. Assume x"+1 =g,g, ... g, in 7, where,
2:2; ... g are monic irreducible polynomials over 7. Since
ged (n, p) =1, theng,, g, ..
lemma 4.2, we know that there are pairwise coprime
moni¢ irreducible polynomial £, £, ... f, over 3¢ such that
xu=ff, . fand fi =g forT=1,2, .., % then(f), {f), ...,
{fy are pairwise coprime ideals of the ring R [x] and
{x*u) = {{,}, {633, ... {f), by Chinese Remainder Theorem,
the canonical homomorphism:

. g, are pairwise coprime. By

R[]/ <X“ - u) — @L,%[X]/<f, (X)>

is isomorphism.
Let C be a u-constacyclic codes over ® of lengthn,
c=1(cy, G ..... &) € R 15 a codeword with:

e(x)=37 ¢, x'
the corresponding polynomial C (x) = {c (x)|ceC} is an
ideal of % [x]Ax"y, denote C (x)AC xXEE)) by C,
1 <i<k, obviously, C; is the ideal of % [x]/{f;}. By theorem

4.1, 1t 18 easy to verify that c=a" ¢, and we have the
following enumeration result.

Corollary 4.1: The number of distinct pp-1-constacyclic
codes of length N = np* over Z, is (mp*t+] ), where k is
the number of distinct monic basic divisors of x*um R
[x].

In the following we describe up = l-constacyclic
codes of length N = np® over Z. interms of its generator
polynomials. We have the following lemma.

Lemma 4.5: Let f,, f,, ..., f, are pairwise coprime monic
basic polynomial over ® such that
x*u= fif,.., fand g, g, ..., g are pairwise coprime monic

irreducible
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basic  irreducible polynomial over $® such that
X'+l =gg; ... g, Thereare & &,,--.& inR [x] A{f(x)such
that:

Lo =111 (x— &)
and there are:
Ty
in R [x]AL(x)) such that:
g (=I5, (x-7,)
then:
o g (&) saunitinM [xJAE xNh=1,2, . h,ifi#

o g @Eyelutlibut g (&) isnotin{(utl)’), h=1,2,
o

o  Ifr(x)eR [x]and g (&) =0 forany h, O<h<h, then r
(x)edt; (<))

Proof: (1) Forl=1,2, ..k smce & & - & are the roots
of £ (x) = 0in % [x]/f; (x)), such that:

F(x)=TI, (x—&)
it follows that:
£:00) = F.00) =TTy (x— &) =TT (x - 11.)

then:

g (éjl) = f1 (éjl) = Hii=1(aj1 - T’Iih)

if 1#), then:

&1 *TTh #0

and -, 1s neninvertible forany 1=1,2, ., h, h=1,
2. ... h. Hence, g ¢y saumtforh=1,2, .., hifI#], (2)
Since x“—u=flfz---fk,iil,i‘z,---,iihi are the roots of
()= 0in ¢ [x]AE GO, then (& ) = wh=12---h, . Fori=1,
2, .., k. We know that x+1 = g g, ... g,

then g (&,)g,(&,) g, (&) =(&,) +1=u+l,
g,(&) isaunit in R [x]Af (x)), if i#] hence:

we have

2.8 =1, g ) (u+h=au)(u+l)

where, a(wy=(I1,g &) 15 a unit in R [x]AEE).
Therefore, g (&) snotin{(u+1)}, h=1.2, .. k. (3)For
0<i<k, since f; (x) is a monic polynomial in 3 [x], then there
are s (x), v (x) € ¢ [x] such that deg (v(x))=<deg(fi(x)) and r
(x)=s(x) £ (x)+v (x), then v(&)=0.If v (x) # O, there is an
integer 11 O<l<mp’-1, such that:

v(x)y=2F v x)u+1)
where, v; (x) € R (x) and v, (x)=0 then:
V(g ) = v, () @+ 1) +r{u 1y

£ (&)=0for some r € RE)AL)Isince v(g)=0 then
v(Ey=0 since f&y=o and f (x) € R [x] 1s a basic
irreducible  polynomial — and  deg(wi (x))<deg(F, (),
contradiction, so v (x) hence r (x) = {f, (x)).

Theorem 4.2: Let C be up-1-constacyclic codes of length
np’ (n prime to p) over Z, . Then there are integers
O<jemp’, I =1, 2 ... k such that:

c={[T.e )

where g; (x)’s are monic irreducible divisors of x™1 over

R [x].

Proof: By Lemma 4.4, cza* ¢, where, Ci= C(x)/ (C(x)

{f; (x))define a map y:C(x)—>CE)WeE)=cE).
Where:

CE,) ={c(E ) c{x)e C{x)}
By (iii) of Lemma 4.5, ker(y)=C(x){f(x)), then
CEMCE{Ex)N=CE)C =C(E,) can be viewed as a
ideal of ® [x] Af}, by Lemma 4.3, we can assume C

isomorphic to the ideal {(ut+1Y of R[x)/{f;,1=1,2, ...,k
let g(x)=T1", gi(x) then by Lemma 4.5:

{e@)=(m el €0)={@+D’)

[=1,2, .. k Thus, by (3) of Lemma 4.4, we can take g (x)
as the generator polynomial of C.

Corollary 4.3: Let:
C={ITF, g} (x)
be a pp-1-constacyclic codes of length np’ (n prime to p)

over 7, , where g; (x)’s are monic irreducible divisors of
x"+lover & [x], then || = p°, where:
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h =3, (mp’ - j ydeg (g, (x)
Proof: Since c=af, ¢, thenthe size of Cis:

i |G|

By the proof of theorem 4.2, C, 1somorphic to the ideal
{(ut1y) of | [x]/{f), T=1, 2, .., k, then by lemma 4.3
|C, |= pimp’ — i, )deg (g, (x)) - Calculating the product, we get
the result.
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