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Abstract: The Capacitated Arc Routing Problem (CARP) is a difficult vehicle routing problem, where given an
undirected graph, the objective is to minimize the total cost of all vehicle tours that serve all required edges
under vehicle capacity constraints. In this study, a Hybrid Genetic Algorithm with Perturbation (HGAP) is
proposed to solve the multi-depot CARP (MDCARP) which generalizes the CARP by extending the single-
depot to the multi-depot. The proposed HGAP incorporates a Genetic Algorithm (GA), a local search, a new
replacement method and a perturbation mechamsm. The proposed HGAP 15 evaluated on the MDCARP
benchmark mstances and computational results show that the HGAP is very competitive.
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INTRODUCTION

Vehicle routing problems are widespread in logistics
and distribution. To be specific, there are two classes of
vehicle routing problems, one 1s node routing problems,
such as Capacitated Vehicle Routing Problem (CVRP) and
the other 1s arc routing problems, such as the Capacitated
Arc Routing Problem (CARP).

The CARP mtroduced by Golden and Wong (1581)
is an NP-hard problem; therefore,
meta-heuristics have been the  mainstream
approach to solve the CARP. TFor example,
augment-merge (Golden and Wong, 1981), path-scanming
(Golden et al, 1983), parallel-insert (Chapleau et al.,
1984), construct-strike (Pearn, 1989), augment-insert are
simple constructive heuristics, and route-first, cluster-
second (Ulusoy, 1985) and cluster-first, route-second
(Benavent ef al, 1990) are two-phase constructive
heuristics. In the recent decade, some meta-heuristics
have been proposed such as simulated annealing
(Eglese, 1994), tabu search (Hertz et al, 2000,
PBrandao and Eglese, 2008), variable neighborhood search
(Polacek et al., 2008, Hertz and Mittaz, 2001), guided local
search (Beullens et al., 2003), memetic algorithms
(Lacomme
(Santos et al., 2010), etc. A recent review can be found in
Liu et al. (2008) and Corberan and Prins (2010).

Applications of the CARP mclude winter gritting,
street sweeping, garbage collection, mail delivery, meter

heuristics and

et al, 2004) and ant colony optimization

reading, school bust routing and other pickup or delivery
problems along the streets of a road network. However,
the CARP has its limitation in modeling most real world
applications. For mstance, when more than one depot 1s
used, the problem should be modeled as the multi-depot
CARP (MDCARP) (Kansou and Yassine, 2010).

The MDCARP can be described as follows: given an
undirected graph G = (V, E) with a set V of n nodes, an
undirected edge set B, where ¢; = ¢;(20) 15 the cost
(length) of an edge (I, j)cE and EgcE is the set of t
required edges (tasks). Let D=V be the set of M depots.
A fleet of homogeneous vehicles with capacity Q is
stationed at multiple depots. The MDCARP is to
determine a set of routes in such a way that: (1) Each
vehicle route starts and ends at the same depot; (2) Each
required edge 1s served exactly once; (3) The total demand
of each route served by that velicle does not exceed
vehicle capacity Q; and (4) The total routing cost 1s
minimized. The number of vehicles 1s a decision vanable.

Our proposed approach in this Study s a
hybrid Genetic Algonithm with Perturbation (HGAP)
which integrates a Genetic Algorithm (GA), a Local
Search (I.3), a new replacement method, a perturbation
mechanism. The structure of the remainder of this
study is as follows: Section IT gives the general framework
and key components of the proposed HGAP.
Computational experiments on benchmark data are
presented in Section I1I and finally, conclusions are given
1n Section IV,
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HYBRID GENETIC ALGORITHM

The proposed hybrid genetic algonthm with
perturbation (HGAP) 1s a combination of a population-
based global search GA and an individual-based local
search. Several characters of our HGAP differ from the
memetic algorithm (called MDMA) of Kansou and
Yassine (2010) are as follows:

¢ Our chromosome is a permutation of t required edges
(tasks), without route delimiters, while in the MDMA,
the chromosome is a sequence S of w sub-
chromosomes 3; where w 1s the number of depots
and each 5, 1s a sequence of a 3, tasks. That 15 to
say, the chromosomes use depots as delimiters, only
without route delimiters for routes from a given depot

* Due to the structure
mentioned above, we propose a MD-Partition to
convert each chromosome into a MDCARP solution,
while the MDMA applies the Split procedure of
Lacomme et al. (2004) to each S; of S to get a
MDCARP sclution

*+ TIn our HGAP, one chromosome P, is selected in the
parent  population using binary
replacement described in the Section TI-E and it is
replaced by one child C if the child C 1s not a clone of
any other chromosomes in the parent population,
else a double swap perturbation is implemented on
the child C to diversify the population

* The proposed HGAP includes two phases, 1e., a
main phase and a restart phase. In the restart, the
first, the third ... and the (ps-1)® chromoscmes of
population are kept and the rest are replaced by new
randomly generated chromosomes, then, the main
phase is repeated but with a higher local search
probability p,

different chromosomes

tournament

The general framework of the HGAP can be
summarized in Fig. 1. Several main components are
described in detail in Section 1I-A~E.

Chromosomes structure and evaluation: To describe the
tasks clearly, each required edge is identified by being
marked a task number instead of pairs of nodes. Each
edge ucE has a tail (start node) a(u), a head (end node)
b(u) and a traversing (deadheading) cost tc(u). Each
required edge (task) ucEy has a demand d(u), a serving
cost sc(u) and an inverse mark inv(u). Task inv(u) and u
have the same traversing cost, demand and serving cost.
Note that each edge task ucEy can be served in either
direction, 1.e., only one of task u and mv(u) 1s served.

Step 1: The initial population is constructed using two heuristics and
random generation

Step 2: Fach iteration selects two parents P1 and P2 randomly and
then two children C1 and C2 are obtained using OX and only one of
thern is randomty selected as child C

Step 3: The child C undergoes the local search (LS) in a given
probability p,,

Step 4: Two chromosomes are selected from the parent population and
the worse one P, is replaced by the child C if the child C is not a
clone of any other chromosome in the parent population, else an
double swap perturbation is implemented on the child C to diversify
the population

Step 5: The main phase stops after a maximum number of iterations
(ni). After that, the restart procedure is implemented for nr times,
where the first, the third, the fifth ... and the (ps-1)" chromosomes are
kept, and others are replaced by new randomly generated
chromosomes, and then the main phase is repeated but with a higher
local search probability p,. That is to say, the total number of iteration
is (1+nr) =ni

Fig. 1: General framework of HGAP

Our chromosome T 1s a permutation of t required
edges (tasks), without route delimiters. Implicit shortest
paths are between consecutive tasks. Tt can be viewed as
a RPP or a giant tour. Under this kind of chromosomes
structure, the chromosome must be converted into a
CARP solution by a multi-depot partition (MD-Partition)
procedure which corresponds to chromosome decoding
and can evaluate the performance of each chromosome.
The fitness 1s the total cost of this solution.

Given a chromosome T = (¢,, ©,..., ¢,) where t
corresponds to the number of tasks, the MD-Partition
procedure works on an auxiliary directed acyclic graph
G,=(X, Y, Z), where X 1s a set of t+1 vertex index from a
dummy node 0 to t. Y is asetofarcs where one arc
(1, 1)€Y means that a trip serving tasks subsequence
{Cit Gz 6) 18 feasible m terms of capacity, ie.,
load(i+1, ))<Q where load(itl, j) is the load of the trip,
respectively. 7 is the set of the weight of arcs where one
weight 7, corresponds to the total cost of the vehicle
from depot m to serve tasks subsequence (¢u;, Cug..., G-
The optimal MD-Partitioning of chromosome T
corresponds to a shortest path from node 0 to node t in
G, Thus, this problem is a Shortest Path Problem (SPP)
which can be solved in pseudo-polynomial time based on
Bellman’s algorithm.

Consider one example of vehicles capacity Q = 30,
2 depots and 4 edge tasks with their respective demands
being 8, 14, 8 and 9. Figure 2a shows the chromosome tour
T =(c,, ¢, ¢, ¢,) = (1, 2, 3, 4) with demands in brackets.
Thin dotted lines represent shortest paths between any
two nodes, under t = 4 tasks are the
serving costs and depotl and depot2 represent the
depots (Fig. 2a). The MD-Partition procedure build an

the numbers
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Fig. 2(a-c): Example of MD-Partition (a) Chromosome
tour with 4 edge tasks (b) Auxiliary graph G,,
labels and shortest path and (¢) Resulting
trips

auxihary graph G, with t+1 nodes mdexed from 0 tot,
as shown in Fig. 2b where a convex downward (upward)
arc represents that the vehicle from depot2 (depotl)
serves the corresponding tasks. For example, Arc (0, 1)
with cost = 26 represents the trip (0, c,, 0), where the first
0 and the last O correspond to the depotZ. A shortest
path from node 0 to node t in G, (bold) indicates
the optimal MD-Partitioning of T: Two trips and total
cost 76. The resulting MDCARP solution 1s trip (0, ¢, ¢,
0) with cost 36 served by the vehicle from depot2 and trip
(0, ¢;, ¢y, 0) with cost 40 served by the vehicle from
depotl, as shown m Fig. 2c.

Tnitial population: The population P is composed of ps
chromosomes. The initial population consists of two
good (low-cost) and ps-2
chromosomes. To be specific, two good chromosomes

chromosomes random

i=4j=7
Pl [ 1 |4 [s |7]9o]10 [12|3]6]s
P2 131 2 100|816 |115] 7 9]11] 4
c: [ 8 [6 [15]7 oo [12]1]4]13
cx[o [w[ue]s]e[us[7]s]1]4

Fig. 3: Example of OX crossover

(RPP tours) Pl and P2 are comstructed by using
Frederickson heuristics (Frederickson, 1979).

All the above methods generate ps permutations of
tasks (giant RPP tours) which are then converted into ps
solutions by the MD-Partition procedure. Then each
solution is concatenated into one chromosome where
route delimiters (depots) are removed and all
chromosomes are stored using an array in increasing cost
order.

Selection and crossover: Two parents P1 and P2 are
selected randomly and then a classic crossover
Operatator, order crossover (OX) 15 used with slightly
modification: first, the OX should take task u and inv{u) as
the same edge when 1t finds them in two parents; second,
the OX generates two children chromosomes which are
both kept in the original OX, but only one child randomly
chosen is preserved in our OX. Given two parents P1 and
P2, the OX randomly selects two crossover points 1 and |
(1<i<j<t) along the length of the chromosomes. The
subsequence P1(1) to P1(j) 1s copied mto C1(1) to C1(3) and
P2 is scanned circularly from j+1 onwards to i-1, to fill C1
in parallel with the tasks missed in C1. The C2 can be
obtained by exchanging the roles of P1 and P2. Finally,
only one child C, randomly selected between C1 and C2,
1s kept. Figure 3 gives one sample of OX with1=4,7=7,
where ten tasks are undirected and each edge task f 1s
converted into two opposite arc tasks with inv(f) = 10+£,
te,inwv(1) =11, nv(2) = 12 and so on. Therefore, when C1
is filled using P2(j+1) to P2(i-1), task 2 in P2 should be
excluded because 1t’s opposite arc 12 13 the same task that
has been included in C1.

Local search: A Local Search (1.8) is adopted with a fixed
probability p,, in our HGAP, to produce a better offspring
after each crossover. The LS works on a CARP solution
obtained by implementing the MD-Partition procedure on
the child C, because if it Operatates directly on the
chromosome C without route delimiters, a large amount of
time will be spent to evaluate each move of it.

Let tasks 1 and j are served after tasks f and g n their
respective routes and all move types are described below
where M4 and M5 are not used m the MDMA of Kansou
and Yassine (2010):
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M1: move task f after task g

M2: move two consecutive tasks (£, 1) after task g
M3: swap task fand g

M4: swap task f and (g, J)

M5: swap task (f, 1) and (g, j)

Mé: 2-opt moves

The 1.8 scans each pair of tasks (f, g) in o{t*) and
each iteration of the LS mplements M1~M6 and stops
when it finds the first improving move and then the
solution 18 updated and the next iteration 1s continued
until all pairs of tasks are scanned; however, the whole
M1-M6 process for each pair of tasks are repeated as
long as the solutions can be further improved.

There are several points to be noted in the LS. First,
each type of move 1s implemented in the same route or in
two different routes. Second, in M1-M5, if a task f is
moved to another position, it can appear in either as { or
v (f). Third, m M1 and M2, g can be the start depot of its
route. At last, some routes are removed if they become
empty.

The final best feasible solution of LS is converted
mto a chromoesome by concatenating these routes and
excluding (depots). Then, the
chromosome is converted into a solution by the optimal

route  delimiters
MD-Partition which sometimes can bring a better solution
for the same chromosome.

Replacement and restart: Inspired by binary tournament
selection, we propose a new replacement method which
can be called binary tournament replacement, 1e., two
chromosomes are selected from the parent population and
the worse one P, is replaced by the child C if the child C is
not identical as any other chromosomes of the parent
population. After replacement, the ps chromosomes are
stored in increasing cost order again.

In the replacement process, if the child C is a ¢lone of
a chromosome other than P, of the parent populatiorn, one
random double swap perturbation described s
inplemented on child C to avoid clone and diversify the
population. The double swap perturbation randomly
swaps two consecutive tasks with another two and the
resulting chromosome 1s converted inte a MDCARP
solution by the MD-Partition and improved by the local
search described in Section II-D. Then, the improved
solution is concatenated into a new chromosome where
route delimiters (depots) are removed. If the new
chromosome is still a clone of a chromosome other than P,
of the parent population, then it replaces the chromosome
that it “*clones”.

The proposed HGAP includes two phases, i.e., a main
phase and a restart phase. The main phase stops after a
maximumn number of iterations (m). After that, the restart
procedure 1s implemented for nr times, where the first, the
third, the fifth ... and the (ps-1)® chromosomes of
population are kept and the rest are replaced by new
randomly generated chromosomes. Then, the main phase
1s repeated but with a higher local search probability p..
That is to say, the total number of iteration is (1+nr) *ni.
Tt is worth noting that the proposed partial replacement
procedure m the restart phase can reserve good
chromosomes and mcrease the diversity of population
because any two adjacent chromosomes in the sorted
population are often close to clones after many iterations
of each phase.

COMPUTATIONAL EXPERIMENTS

Instances and parameters settings: Our HOAP are
implemented in C and executed on an Intel (R) Pentium (R)
Dual 1.4 GHz PC under Windows XP.

The benchmark instances set (mdgdb) for the
MDCARP 1s available from Kansou and Yassime, 2010.
The mdgdb set 15 23 instances with 727 nodes, 11~-55
edges which are all required edges (tasks).

By preliminary experiments, we determine the
parameters of the HGAP as follows: the population size ps
15 30, the maxumum times try_max to generate each random
non-clone chromosome is 10, the local search probability
Pw and p, in the main phase and restart phase are 0.2 and
0.4, respectively, the stopping criteria of the mam phase
1s the maximuim iteration number m=2000, the maximum
number of restarts nris 2.

Computational results: In this section, we compare our
HGAP with the MDMA and HACA on the mdgdb
instances set of Kansou and Yassine, 2010 for the
MDCARP and the gdb instances set for the CARP.

The results of the benchmark mdgdb set for the
MDCARP and the gdb set for the CARP are presented in
Tables 1 and 2, respectively. For each instance, the
columns headed |V] and |Eg| contain the mumber of vertices
and required edges, respectively. The columns headed LB
and BKS m Table 2 list the lower bound and the best
known solutions for the CARP reported in recent
publications, respectively. The columns headed HACA,
SEC,. MDMA, SEC,;, HGAP and Sec. in Table 1 and 2
indicate the solutions obtained and computing times (in
seconds) of each metaheuristic. In Table 1 and 2, if the
solution of our HGAP is superior to that of the HACA and
MDMA of Kansou and Yassine, 2010 then it 1s shown in
bold.
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Name V] i HACA SECH MDMA SECy HGAP Sec
mdgdbl 12 22 300 <1 300 <1 300 <1
mdgdb2 12 26 331 <1 321 <] 321 <]
mdgdb3 12 22 267 <1 263 <1 259 <1
mdgdb4 11 19 266 <1 266 <] 266 <]
mdgdbs 13 26 364 <1 351 <1 361 <1
mdgdb6 12 22 285 <1 291 <] 282 <]
mdgdb7 12 22 325 <1 325 <1 325 <1
mdgdb8 27 46 350 1.5 350 1.7 328 4.3
mdgdb9 27 51 314 1.7 309 2.1 279 4.7
mdgdb10 12 25 275 <1 275 <] 275 <]
mdgdbl1 22 45 407 <1 403 <1 387 1.9
mdgdb12 13 23 450 <1 440 <] 420 <]
mdgdbl3 10 28 540 <1 540 <1 528 <1
mdgdbl4 7 21 96 <1 96 <] 96 <]
mdgdb15 7 21 56 <1 56 <1 56 <1
mdgdbl6 8 28 127 <1 127 <1 125 <1
mdgdbl7 8 28 9 <1 91 <1 91 <1
mdgdb18 9 36 160 <1 158 <] 158 <]
mdgdbl19 8 11 55 <1 55 1.1 55 <1
mdgdb20 11 22 121 <1 121 1.5 121 <1
mdgdb21 11 33 158 <1 158 1.8 154 2.8
mdgdb22 11 44 202 1.3 201 2.6 196 4.7
mdgdb23 11 55 235 1.7 235 32 229 6.4
Table 2: Results for the gdb set

Name V] |Ex| LB BKS HACA SECk MDMA SECw HGAP Sec
gdbl 12 22 316 316 316 1 3le <] 3le <1
gdb2 12 26 339 339 339 <1 339 1.5 339 <1
gdb3 12 22 275 275 275 <1 275 1.3 275 <1
gdb4a 11 19 287 287 287 1 287 1.3 287 <1
gdbs 13 26 377 377 377 <1 377 1.4 377 <1
gdbé 12 22 298 298 298 <1 298 1.2 298 <1
gdb7 12 22 325 325 325 <1 325 <1 325 1.0
gdb8 27 46 348 348 360 2 353 2.9 348 30.0
gdbo 27 51 303 303 333 2 319 31 303 26.3
gdb10 12 25 275 275 275 <1 275 1.2 275 1.1
gdbll 22 45 395 395 405 1 397 1.7 395 1.3
gdb12 13 23 458 458 468 <1 460 2.7 458 4.95
gdb13 10 28 536 536 544 1 544 1.6 536 5.88
gdb14 7 21 100 100 100 <1 100 <] 100 <]
gdbl5s 7 21 58 58 58 <1 58 <1 58 <1
gdbls 8 28 127 127 127 <1 127 1.8 127 <1
gdb17 8 28 91 91 91 <1 91 1.3 91 <1
gdb18 9 36 164 164 164 <1 164 1.5 164 <1
gdb19 8 11 55 55 55 <1 55 <1 55 <1
2db20 11 22 121 121 121 <1 121 <] 121 1.1
gdb21 11 33 156 156 156 <1 156 1 156 1.4
gdb22 11 44 200 200 202 1 200 2.2 200 2.5
gdb23 11 55 233 233 237 3 237 3.2 233 16.2

The results show that the HGAP is superior to the
HACA and the MDMA. For the MDCARP, the HGAP
finds 11 new better solutions out of 23 instances in the
mdgdb set; and for the CARP, the HGAP finds all the
optimal solutions on 23 instances in the gdb set. The
comparison between our HGAP, the HACA and MDAM
shows that our computing times are a little more than the
HACA and the MDMA but still very small.

The good results can be explained as follows: (i) Our
chromosome 1s a permutation of t required edges (tasks)
without route delimiters and a chromosome can be
converted into an optimal MDCARP solution subject to
chromosome sequence by the MD-Partition procedure; (ii)

The perturbation mechanism to ensure a broad exploration
of the search space, (u1) The binary tournament
replacement and the second, the fourth, the sixth ... and
the ps® chromosomes replacement in the beginning of
each restart phase increase the population diversity.

CONCLUSION

This study presents a Hybrid Genetic Algorithm with
Perturbation (HGAP) for the Multi-depot Capacitated Arc
Routing Problem (MDCARP). In the HGAP, we propose
the pertwrbation mechanism, the binary tournament
replacement and the second, the fourth, the sixth ... and
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the ps™ chromosomes replacement in the beginning of
each restart phase which all increase the population
diversity and thus prevent the HGAP from trapping in a
local optimum.

Benchmark instances for the MDCARP and the
CARP are tested and the results show that the HGAP is
competitive with existing metaheuristics and the
computing times are reasonable. Our research can be
further extended in several ways. First, an efficient lower
bound can be provided to evaluate our HGAP. Second,
more complex and practical constraints can be mvolved,
such as time windows and periodic demands for tasks.
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