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Abstract: Logistics demand forecasting is an important step in the process of logistics system planning and
development. The existing models for logistics demand forecasting often encounter problems of low forecasting
accuracy and slow convergence speed. Consider these problems, a hybrid model called KPCA-LSSVR-TOOPSO
was proposed to improve the forecasting accuracy and accelerate the convergence speed. The hybrid model
integrated the Kernel Principal Component Analysis (KPCA), the Two-order Oscillating Particle Swarm
Optimization (TOOPSO) and least squares support vector regression. First, the nonlinear features of the
mfluential factors of logistics demand were extracted by KPCA. Then, the kernel principal components were
put into LSSVR and a LSSVR model was established for logistics demand forecasting. Fmally, TOOPSO
algorithm was used to optimize the parameters in LSSVR. Empirical results from the China logistics demand
indicate that the proposed model decreases the dimension of the modeling data. The minimum and maximum
relative prediction errors of the proposed model are only -0.33548 and 5.3270%, respectively. The NRMSE,
NMAE and MPE of the model are 0.1890, 0.1367 and 0.0182, which are smaller than ones of the other three
models. The convergence speed of the proposed model is the fastest among the four models.
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particle swarm optimization algorithm

INTRODUCTION

Logistics system 1s a complex dynamic system and
logistics demand is affected by many factors, such as the
social economic factor, the social environmental factor,
the national policy factor and so on. These factors have
a complex 1mpact on the logistics demand, which leads to
the nonlinear relationship between the logistics demand
and its influential factors. The traditional logistics
demand forecasting methods, such as the regression
analysis (Fite et al., 2001), the time series analysis
(Adrangi et af, 2001), the grey forecasting model
(He, 2008) and the rough set theory (Feng ef al., 2010),
can’t obtaimn satisfactory results. In recent years, artificial
neural network (ANN) 13 introduced into logistics demand
forecasting (Geng et al, 2007). As a nonparametric
method, ANN can approximate the nonlinear relationship
between logistics demand and its influential factors well.
However, ANN often meets with some problems in
practical applications including an over-fitting problem
and a local minimum point, which may have bad influence
on forecasting accuracy of logistics demand.

Support Vector Machines (SVM), proposed by
Vapruk (1995), 15 one of the latest machine learning
methods, which 1s based on structural risk mimmization.
SVM solves the problems in ANN and achieves better
logistics demand forecasting results relative to ANN
(Hu and Lu, 2008). Least squares support vector
regression (LSSVR) is the modified form to SVM for
regression problems that simplified inequality constraints
to  equation constraints, which
computational efficiency (Suykens and Vandewalle, 1999).
The selection of the parameters m LSSVR has direct
impact on LSSVR performance. As a commonly used
parameter selection method of L3SVR, cross validation
method needs trials and tests, which will waste time and
have difficult to obtain the optimal parameters. Two-order

improves  the

oscillating particle swarm optimization (TOOPSQ) is an
improved PSO algorithm. By introducing a two-order
oscillating evolutionary equation, TOOPSO could adjust
the global and local search capability of the algorithm and
avoid the local optimization (Hu, 2007). The parameters of
LSSVR will be optimized using TOOPSO algorithm in this
study.

Corresponding Author: Li-Yan Geng, School of Economics and Management, Shijiazhuang Tiedao University, Shijiazhuang,

050043, China

3557



J. Applied Sci., 13 (17): 3557-3562, 2013

If all the influential factors are used to forecasting
logistics demand, the established forecasting model could
become complex and then limit the popularization and
application of the model. Tiang et al. (2012), combined
Kermel principal component analysis (KPCA) with LSSVR,
to forecast logistics demand and the results showed that
the combined model simplified the model structure and
outperformed the LSSVR 1n logistics demand.

In this study, KPCA-LSSVR-TOOPSO model is
proposed. The kernel principal components extracted from
the influential factors of logistics demand using KPCA are
selected as the input variables of LSSVR and TOOPSO
algorithm is used to optimize the parameters of LSSVR.

THEORY

Kernel principal component analysis: Given the observed
data x;, R® for j = 1, 2,..., N, where N is the
mumber  of  observed data.  Kernel Principal
Component Analysis (KPCA) maps the observed data
into the high-dimensional feature space F using the
nonlinear mapping function ®(x) and the corresponding
covarlance matrix can be computed as:

ch =

z|~

3 00 10(x,)! (1)

where, ®(x)), for j = 1, 2,..., N, 1s assumed to be mean
centered and variance scaled. Then the principal
components can be obtained by the following equation:

Av= CFV:%i‘D(XJ,V)CD(XJ)T (2)

where, eigenvalues A = 0 and veF\{0}. All solutions v
with A = 0 must lie in the span of ®(x,),..., D(x,), that is,
there exist coefficients such that:

v= ie.jq:(xj) 3

We can get the following equation by left multiplying
Ox)with (2) forall j=1,2,... N

A (D)) = D(x).CTv (4

Define a kemel matrix K of order NxN with elements
as:

kg = @ (x> D(x) = k (x, %)) (%)

By mtroducng a kemnel function k(x,x), we can
compute inner products in F space without performing

nonlinear mappings. The function that satisfies the
mercer’s condition should be as the kemel function. Some
of widely used kernel functions are Gaussian kernel,
polynomial kernel and sigmoid kernel. Before applying
KPCA, the mean centering of ®(x,) in feature space should
be performed. The centered kernel matrix K can be
obtained from:

K=K-1,K-1,+1,Kl, (6)

where, 1; 1s a N>N order matrix with elements as I, = 1/N
forij=1,2,...,N. Then, the eigenvalue decompositionto K
18 written as:

NAB=KB (7

where, b, G = 1, 2., N) are the eigenvectors
corresponding the eigenvalues 1 (j = 1, 2,.., N). The
sclution (1, b) should satisfy L (b, b) = 1. Then, the pth
kernel principal component s, of a test vector x 1s obtained
by projecting ®(x) onto the direction of the pth
eigenvector:

N
SP - qu)(xi) = EBx,p k(xi’xj) (8)
i=1
METHODS
KPCA-based LSSVR model: The basic idea of

KPCA-based LSSVR model is that the kernel principal
components extracted using KPCA are selected as the
input variables of LSSVR to reduce the dimension of
modeling data.

Suppose there are a set of training data
L = {(s,y)ll = 1,2,...n},where n 1s the number of data for
traming. The input vector s, R'is the d-dimensicnal kernel
principal components and y, R is the corresponding
1-dimensional output value. The input data are mapped
into a hyperspace by the nonlinear mappmg function
@(s)). The primal constrained optimization problem of the
LSSVR model is obtained as below:

minJ(w,c):%leH%YECf )

1=1
v,=0'e(g)+b+e, 1=1...n (10)

where, w, b are the weight vector and bias constant value,
respectively. e1s the error variable and vy 1s the regularized
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parameter. Solving this optimization problem in dual
space, leads to transforms the primal problem into the
following set of linear equations based on the
Karush-Kuhn-Tucker (KK T) condition:

5 xufu ay

where, @ = [@), G, @] 1= [1,. 110 Y = [V Voo on Yl
and T is an unit matrix of order n. K is the kernel
function matrix in which the kernel function is defined as
k(s,s) = @s)"D(s) for 1 = 1,2,....,n. Here, the Gaussian
kernel function with the form k(s,s) = exp(-|s,-s||/0°) is
considered, where ¢° is the kernel parameter. Finally, the
LSSVR model is given by:

Yn:iﬂh exp(-||s, -s|* /@’y +b (12
1=1

where, ¢(1 = 1,2,... ,n) are the Lagrange multipliers.

Optimal parameters of KPCA-based LSSVR optimized by
TOOPSO: According to Eq. 11 and 12, there are two
parameters needed to be decided: The kernel parameter o
and the regularized parameter v. Usually, cross validation
method is used to select the parameters (y, 0°) of LSSVR.
But this method is an experimental method. The
parameters obtamned may not be the optimal, which will
have bad impact on forecasting performance of LSSVR.

To improve the forecasting ability of LSSVR,
TOOPSO algorithm is used to choose the optimal
parameters (y, 0°) of LSSVR in this paper. TOOPSO
algorithm introduces two oscillating factors into the
evolutionary equation to adjust the nfluence of the
acceleration on the velocity, which can overcome the
premature problem validly and increase the evolutionary
speed. Let t denote the number of current iterations and
t,. denote the number of maximal iterations. If t<0.5t, .,
oscillating factors £, and £, and are taken as:

<";1<(2.,'fq—l)/clrl,&,2 <(2\/E—1)/c2r2 (13)

If t = 0.5t,,,, oscillating factors £, and £, are taken as:

2 for ~Dien, & 2 (2for - e, (14)

where, ¢, and ¢, are acceleration factors which control the
maximum step size. 1,, 1, are random numbers between zero
and one. After the parameters (y, 0°) being obtained
through the input and output data, the well trained LISVR
model can be applied to forecasting.

The procedures of the KPCA-LSSVR-TOOPSO model
for forecasting are summarized as below.

Step 1: Preprocess the data. The whole dataset are
normalized using the mean and standard
deviation of each variable

Extract the nonlinear feature. Choose the kernel
function and compute the kernel matrix. Apply
eigenvalue decomposition to the kernel matrix
and extract nonlinear principal components
according to Eq. 8

Generate imitial M sets of particles composed of
the parameters (y, 0°). Set the parameters
containing acceleration factors ¢, and ¢, and the
number of maximal iterations ., the maximal and
minimal inertia weight w, . and w,,

The Fitness function is defined as follows:

Step 2:

Step 3:

Step 4:
1+ -
E:fE(yl—yl)2 (1 5)
ni5

where, 1 is the number of training samples. y, and ¥, stand
for the actual values and forecasting results from traming
samples, respectively.

Step 5: Compute the fitness value of each particle
according to Eq. 15. Update the optumal particle
position as the position corresponding to the
minimum fitness value of the individual particle.
Update the global optimal particle position as
the position corresponding to the mimmum
fitness value of all the particles. The mertia
weight w is automatically linearly decreased with
the evolutionary process (Zhao ef al., 2006)

Step 6: If the stopping criteria are met, the evolutionary
process 1s terminated. The global optinum
particle position corresponds to the optimal
parameters (v, 0°), otherwise, go back to step

Step 7: The LSSVR model is established by the obtamned
optimal parameters (y, o) for forecasting
logistics demand. Then the forecasts are
transformed into the primal forecasts

EMPIRICAL RESEARCH

Data description: The data used in empirical research is
China logistics data from 1991 to 2011, which comes from
National Bureau of Statistics of China. Here the total
social logistics costs (X,) is selected as the reflection of
the logistics demand.

According to the availability and operability of data,
seventeen indicators are selected as the nfluential factors
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Table 1: Results of KPCA

Contribution Cumulative
Components Eigenvalue rate (%) contribution rate (%)
1 0.0054 84.59 84.59
2 0.0005 7.66 92.26
3 0.0003 4.93 9719
4 0.0001 1.38 98.57
5 0.0001 1.01 99.58
6 0.0000 0.20 99.77
7 0.0000 0.15 9902
8 0.0000 0.04 9994
9 0.0000 0.02 9908
10 0.0000 0.01 99.99
11 0.0000 0.01 100.00
12 0.0000 0.00 100.00
13 0.0000 0.00 100.00
14 0.0000 0.00 100.00
15 0.0000 0.00 100.00
16 0.0000 0.00 100.00
17 0.0000 0.00 100.00

of the logistics demand. They are the gross domestic
product (x,) the total output value of the primary
industry (x,), the total output value of the second industry
(%), the total output value of tertiary industry (x ), the
total investment in fixed assets (x,), the business volume
of postal and telecommunication services (x,), the total
value of imports and exports(x,), the total retail sales of
the consumer goods (x;), the household consumption
expenditure (x,), the total freight traffic (x,), the total
freight ton-kilometers (x,,), the number of employed
persons in logistics industry (x,,), the possession of civil
trucks vehicles (x,,), the number of national owned railway
freight cars (x,), the possession of civil cargo vessels
(x,5), the total population (x,;) and the retail price index

(Xp)-

Empirical process and results analysis: In KPCA, the
kernel function should be selected first. In this paper, the
Gaussian kernel function is used which is as the same to
the kernel function in LSSVR. Results from the KPCA to
the influential factors of logistics demand are shown in
Table 1. It 1s clear that KPCA obtains good feature
extraction effectiveness. The first three principal
components extract 97.19% information of the original
data and we select the first three principal components
obtained as the input variables of L3SVR model.

‘Whole data is divided into two parts: The period from 1991
to 2005 1s selected as the training samples for traming
model and the period from 2006 o 2011 1s as the testing
samples for testing the forecasting performance of the
model.

The onginal parameters of TOOPSO algorithm are set
as follows: M=10,¢,=02,¢,=18 w,__. =09, w,_ =01,
tpe = 30 To reduce the stochastic influence on
parameters, the parameters of LSSVR is optimized

97 —— Actual values

—i— KPCA-LSSVR-TOCPSO
—&— PCA-LSSVR-TOOPSO
—&— LSSVR-TOOPSO
7 4 —¢— KPCA-LSSVR-CV

Total social ogistics costs/irillion yuan
-

3 L ¥ 1 T T 1

2006 2007 2008 2009 2010 2011
Time (year)

Fig. 1: Forecasts curves of the four models

continuously by TOOPSO algorithm for ten times, the
optimal parameters obtained are used to establish LSSVR
model.

The forecasting results of the
KPCA-LSSVR-TOOPSO model are compared with
those of the three models: PCA-LSSVR-TOOPSO,
LSSVR-TOOPSO  and  KPCA-LSSVR-CV. In
PCA-LSSVR-TOOPSO model, the twelve linear
principal components extracted from the original
influential factors using PCA are selected as the input
variables of the LSSVR and the parameters of the LSSVR
are optimized by the TOOPSO algorithm. Tn LSSVR-
TOOPSO model, all of the original seventeen influential
factors are directly put into the LSSVR and the parameters
of the LSSVR are optimized by the TOOPSO algorithm. In
KPCA-LSSVR-CV model, the three nonlinear principal
compoenents extracted from the original influential factors
by KPCA are as the input variables of the LSSVR and the
parameters of the LSSVR are optimized by five-fold cross
validation method. The forecasting results are given in
Fig. 1 and Table 2.

Based on Fig. 1 and Table 2, the
KPCA-LSSVM-TOOPSO model forecasts the growing
trends of the total social logistics costs better than the
other three models. Apart from relative error of
PCA-LSSVR-TOOPSO of 2007, the smaller relative errors
are founded mKPCA-LSSVR-TOOPSO. And the mirumum
and maximum relative errors are only -0.33548 and
5.3270%, which is the smallest among the four models.
This shows that as a whole, KPCA-LSSVR-TOOPSO
model obtains higher forecasting accuracy than the other
three models.

Three statistics are used to measure the forecasting
performance of the four models. They are the Normalized
Root Mean Squared Error (INRMSE), the Normalized Mean
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Actual KPCA-LSSVR-TOOPSO PCA-LSSVR-TOOPSO LSSVR-TOOPSO KPCA-LSSVR-CV

values
Year (BY)  Forecasts (BY) Relative error (%) Forecasts (BY) Relative error (%) Forecasts (BY) Relative error (%) Forecasts (BY) Relative error (%)
2006 3841 3895 1.4042 3854 0.3378 3827 0.3810 3808 0.8603
2007 4541 4621 1.7726 4504 0.7952 4462 1.7216 4419 2.6782
2008 5454 5436 -0.3354 5242 3.8948 5180 5.0345 5045 7.4972
2000 6083 6032 -0.8284 5655 7.0367 5680 6.6229 5536 8.9838
2010 7098 7477 5.3270 6478 8.7456 6661 6.1614 6472 8.8293
2011 8400 8296 -1.2411 7733 7.9354 7798 7.1643 7159 14.7698

Table 3: Forecasting performance of the four models

Models NMSE NMAE MPE Time
KPCA-LSSVR-TOOPSO 0.1890 0.1367 0.0182 5.10
PCA-LSSVR-TOOPSO 04772 0.3943 0.0479 7.33
LSSVR-TOOPSO 0.4140 0.3609 0.0451 7.97
KPCA-LSSVR-CV 0.7203 0.5938 0.0727 82.42

Absolute Error (NMAE) and the mean percentage

error (MPE). The three statistics are expressed as

follows:

P P

NMSE = \j ¥, v XY v (13)
q=1 a=1
P P

NMAE:EBq_quE‘wa_yq‘ 14

g1 q-1

P

MPE=P* Y|, - y,)/y,] (15)

q=1

where, y, and ¥ are the actual logistics costs and the
logistics costs of different models,
respectively. P 1s the number of the forecasted logistics
costs. At the same tume, the searching time for the optimal
parameters of different model (TIME) is used to evaluate
the convergence performance of the four models. The
results are reported in Table 3.

From Table 3, it is obvious that the NMSE, NMAE,
MPE of KPCA-LSSVR-TOOPSO model are smaller
than ones of the other three models. Compare
with PCA-LSSVR-TOOPSO, LSSVR-TOOPSO and
KPCA-LSSVR-CV, KPCA-LSSVR-TOOPSO has the fastest
convergence speed. And the convergence speed of the
TOOPSO based three models 1s much faster than that
under the five-fold cross validation method. Therefore, 1t
15 concluded that KPCA-LSSVR-TOOPSO model has a
better performance than the other three models on
logistics demand forecasting.

forecasted

CONCLUSIONS

In this study, a KPCA-L.SSVR-TOOPSO maodel is
proposed, in which L3SVR model 1s combined with KPCA

for forecasting logistics demand and TOOPSO algorithm
1s adopted to search the optimized parameters of LSSVR.
An example on China logistics demand 1s taken to
illustrate the effectiveness of the proposed model.
Empirical results indicate that KPCA-LSSVR-TOOPSO
greatly simplifies the structure of the
forecasting model. Moreover, it provides a higher

model

logistics demand forecasting accuracy and a faster
convergence speed relative to the PCA-LSSVR-TOOPSO
model, LSSVR-TOOPSO model and KPCA-LSSVR-CV
model. Further works can focus on using kemnel
independent component analysis (KICA) to reduce the
dimension of the modeling data and choose other
improved P3O algorithms to optimize the parameters
needed m LSSVR.
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