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Abstract: Expensive computation, low efficiency and inaccuracy remain a long-standing challenge in extraction
of fruit shape from massive background points. Towards these objectives, an improved K-neighborhood
adaptive subdivision algorithm 1s proposed to simplify point clouds for reduction of calculation; an MLS-based
local surface fitting is employed for more accurate geometric attributes and a Geometric Similarity-based
Augmenter (GSA) recursive process is used for rapid extraction of apple shape. As a result, the optimal
subdivision parameters help to reduce the number of apple cells to 3.0% of the original points, a 25% down than
the K (4%) neighborhood, the GSA extraction algorithm reduce the number of extracted pear cells by 49.5%.
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INTRODUCTION

Since, the 3D scanner was developed by researchers,
rich details can be acquired from scanned data with dense
point clouds, without management of topological
connection (Colombo et al., 2006), 3D scarmers have been
popularly used for information acquisition in various
applications, including human face reconstruction
(Zhou et al., 2008), architecture reconstruction (Nan ef ai.,
2010) and tree construction (Vincent and Harja, 2008).
Thus in fruit shape reconstruction, the data structure and
algorithm are more simplified than tranditional mesh
representation (Dong et al, 2003), image processing
(Tancsok et al., 2001) and Fimte Element Method (FEM)
simulation (Uyar and Erdogdu, 2009).

While during the process of scanning apple in the
fields, the point clouds from 3D scanner mclude stems,
leaves, trunks and other background due to the apples are
often grown on outdoor trees which make classical
technology unavailable for apple shape reconstruction in
agriculture. In order to enter the follow-up steps of
registration, reconstruction and texture synthesis, points
set simplification and accurate apple shape extraction from
the background has become an important topic in
reconstruction. In this study, apple shape extraction
methods from scattered point cloud will be explored.

The great progress of our algorithm is that: At first,
point octree is used for adaptive subdivision at arbitrary

split positions by taking normals consistency into
account to mmproving the K-neighborhood subdivision
algorithm; then, each splat is locally approximated by
MLS rather than circle or ellipse for more accurate
geometric attributes and less gap between neighbor
splats; at last, we present a recursive process based on
Geometric Similarity Augmenter (GSA) to extract the
“pure” apple splats from background.

The study 1s orgamzed as follows, Section 2
describes the simplification and extraction algorithms;
Section 3 gives simulation results of the algorithm on the
11 apple scans; Section 4 concludes this study and
discusses future works.

ALGORITHM DESCRIPTION

Point clouds of apple scanned by laser scanners are
a set of 3D pomts with laser intensity information in Eq. 1:

R=ixy.z} (1=1,2.M) (M

It 18 set of unorgamzed 3D points with no topological
relationship among them. Due to the drawback of existing
methods on large amount of points, complicated
caleulation process and features obvious, this study puts
forward geometric shape extraction algorithms by
integrating simplification, local fitting and recursive
GSA-based extraction on apple points set R. Ultimately,
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Fig. 1: Pipeline of extraction algorithm

the extracted subset 1s geometrical sigmficance points set,
ie. a piece of complete apple scan. The pipeline of this
step is shown in Fig. 1.

Simplification of point cloud: In view of the
inadequate segmentation or over-segmentation of
existing bottom-up K neighborhood on nonuniform
curvature distribution surfaces of apple, thus study
mnproves K neighborhood by mtegrating pomt octree
(Gross and Pfister, 2007) into apple point cloud R to
produce top-bottom adaptive subdivision, shown in
Fig. 2. So, the Simplification is a process to divide the
points set into discrete hierarchical octree cells along an
arbitrary axis inside the cell taht geometric features can be
calculated for every cell.

In this study, the subdivision begms from a 3D
closure which encloses the entire data space of apple
point cloud R and max level n. According to the point
distribution,
recursively decomposed into eight uncrossed and
compactly supported subspace P, This process
terminates if stopping conditions are satisfied, thus
forming the data bucket of this cell B, = {p, ... p}
storing attributes of cells, such as, the center in
Eq 2

each internal cell containing data is

p=1/m>7" p;

The radius n Eq. 3:

(b)

Fig. 2: Adaptive pomnt octree partiion at arbitrary
positions

Fig. 3: Tllustration of a bounding sphere

I, = max; (B-p+) (3)

The radius of child node shown in Fig. 3. The
normals of each point in Eq. 4:

r]j, ' (p], k'P], k—l)X(P], k+1'P], k) (4)

In the end, the recursive top-down algorithm is used
for adaptive octree subdivision of apple scans by taking
advantage of each cell’s aftributes. A cell is no longer
divided when the number of points in a cell is less than a
prespecified threshold k or normals characteristic of its
points 1s consistency, as in Eq. 5:

IH]Il{l’]hl’]]k>>6 HnJiH - Hn]kH =1 (5)

The pseudo-code of algorithm is shown m Fig. 4.
Local splat fitting: Tn order to simplify the data structure,
the aforesaid converted to splats by

approximating every cell with ML S surface for fitting the
fruit local shape because each splat may have many

cells are
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Octree(R) loop

If |R| <k or Test_normal(n,ny), then
invoking Leaf node(R) and put it into
bucket
initial P,= 3 (j=0......7)
Pou-Get_split position{R)
Jori=11o|R | relassify the point into 8
J-Get_octant_code(p,. p)
PP,
Fori =010 7 /frecords the non-mill set
if Pi=CJ then
ci. Octree(Pi)
return New_octree_node(psplit, ¢0..7)

}

Fig. 4: Pseudo-code of point octree subdivision

points and various curvatures. In general, splat was a
counterpart of point taht is, point was first extended to
splat one to one by circular or elliptical to fill the gaps
between the samples (Gross and Pfister, 2007), thus the
number of splats m a octree node 15 as many as that of
points, so it’s not fit to the fruit shape because of
computational complication and various curvature in each
splat.

While, in the Pomt Set Surface (PSS) theory, Moving
Least Squares (MLS)-based PSS description is more
stable m the local fitting on curvature various surface
(Levin, 2003). And in first step, we obtained splat set
Pg=12... N}, each stores a bucket of data points
B, = {p 1 Dt its center P, radius f and normal n,
N-the number of splats in splat set. So, in the study, a
MLS-based surface S is proposed for defining splat P, by
a two-step projection operation which projects the point
to the ML S surface (Wu ef al., 2005).

In first projection, a tangent reference plane I, is
computed at the sphere center fy, is projected onto S and
needn’t be restricted to pass through H, shown in Eq. 6:

H, = {x[{n, x)-D = 0, |n|| = 1} (6)

Yet, the distance based mfluence of its neighbor
points {p, ,,...p;} to the origin of the tangent frame, is
welghted by making the non-linear energy function
minimum. This weight is called a partition of unity in
Eq 7

3 (¢, phiy DY Odpii-q) (7

Here, n-the normals of H, D-the distance from
coordinate origin to Hy, 8 (»)-Gaussian weight function in
Eq &

a(d) = e’ (8)

In second projection, by weighted least square of all
points in P, en I, a local bivariate pelynomials G, is fitted
with the coefficients being computed by mimmizing the
weighted least squares error in Eq. 9:

(G, 06, v hyyPedlpi.i - gl

Here, (x, y,)--the representation of p; in coordinate
system of I, h--the height of p, over H,.

Finally, curvature ¢, is given n Eq. 10
¢ = A(A AR (10

Here, A -eigenvalues of the covariance matrix in
Eq. 11 (L1, 2003):

M), = 37 (P =P x (P =Py (11)

So far, each splat has 4 properties, they are center fj,
normals ny radius T and curvature ¢; which will be used for
apple shape extraction in the following step.

Extraction of apple shape: Finally, accurate apple shape
extraction has become a key step by in reconstruction. In
state of the art, Marin et «l (2001) proposed a
contribution to the “reverse engineering”-a method for
the extraction of characteristic edges detected with a prior
paraboloid fitting; Pang and Pang (2009) described a
vision system that can extract such 2D/3D visual
properties of mango as size, projected area, volume and
surface area from multiple view images of mango; Wu and
Meng (2008) proposed a robust object segmentation
method; Iskurt and Becerikli (2010) developed a fast and
automatic brain extraction by geodesic passive contour.
The common features of all these extraction methods are
that there was a foreseeable specific geometric shape to
be extracted. While in our task, the fruit shape is random,
so a recursive process is proposed for apple shape
extraction by taking the splats basic selection and culling
units.

In this study, a GSA-based iterative process is
employed to generate pure apple splat sets, the
curvature ¢ and normals n, are used to evaluate
geometric similarity between splats. In initialization,
the algorithm selects a seed splat P, as base set, stack S5
as temporary memory, the Oct (splat) of octree leaf
nodes as the ultimate splats storage, flag, of all leaf
splats as 0 and the P, is added to Oct (splat) (Wang et al.,
2006), pushed to the stack S and set flag, = 1, show in
Fig. 5a. When the stack is not empty, repeat the follow
three-step:
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(2)
Start

Initialization

A4

Generate Oct(splat) from octree(R)

v

Define stack S and set flag, = 0

Select seed p,, push it to S, set flag, = 1

b) Octisplat) loop

If(S is not empty) then
{ Pop splat p, from S
Secarch S-neighbour p; of p,
Jor i =11t0|8] ¥ loop for Sneighbours af p;
(if (satis||prp:l land fiag=0) then
Push p; to S, store p; to Oct{splat)
set flag=1}

Eise
end

Fig.5(a-b): Pipeline of extracting a set of apple splats (a) Imtialization and (b) Pseudo-code of GSA-based iterative

process

0
R

Fig. 6(a-b): Part of the original point clouds of apple, (a)
Bottom, (b) Top, (c) Sidel and (d) side?

*  Popup splat P, from S

¢ Seek the  8-comnected  neighbor  splats
(Gross and Pfister, 2007) P, around P, in xyz
directions by Euclidean distance of p, and p, with
Flag, = 0 (Wang ef al., 2006)

For each P, the dot product of normals in Eq. 12 and

surface vanance difference m Eq. 13 are wused as
geometric similarity |P,-P,/| of all leaves and the apple:

Inj > p (12)

‘Cl_ck‘>8 (1 3)

When geometric similarity are satisfied and
flag, = 0 push P, to stack S, set flag,and store flag, = 1 to
Oct (splat), else, return to step iii for next P;.

This iteration will stop until stack S is empty, as

shown in Fig. 5b.
MAIN RESULTS

In this study, the pomnt clouds of apple are sampled
by 3D CaMega PCP-400 from 11 angles, of which, 1 range
scan is bottom face, 1 is top face and 9 are side faces.
These faces are managed in Eq. 14:

app(l1) = {b, 1.8, %, 85,5,, 85,8, 87,8, 85}

The spatial resolution of peint clouds is 0.03mm, the
point numbers corresponding to app (11) are {134, 642;
124,562,107, 619, 94, 843, 97, (81, 96, 882; 90, 585, 97, 564;
95, 135; 98, 108; 92, 493} respectively and the part of
onginal pomt clouds 1s shown m Fig. 6, those parts circled
by blue color 1s “pure” apple faces.

Simplification: Tn the iterative simplification, threshold k
and normals consistency parameter d in Eq. 5 are the key
parameters for subdivision. The larger k value and smaller
§ value will result in inadequate segmentation, while the
smaller k value and larger & value will result in
over-segmentation, which make calculation complexity
increase by geometrical progression. In the following,
appropriate k and & in Eq. 5 are searched by experiment
from k = 20, 25, 30 and & = 1, 0.95, 0.90. The linear
correlation coefficient in (15) is employed for quantitative

analysis between two pomt sets of k =30and k =30,
5=1.
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Fig. 7(a-c). Effect of & on the num of apple cells for different k-value, (a) Num of cells for 3 kinds of & when k = 30, (b)

Num of cells for 3 kinds of & when k = 25 and (¢) Num of cells for 3 kinds of & when k = 20

For apple scans, the correlation coefficient r = 0.9329,

i.e. the two point sets are replaceable. Then, appropriate
k and & value will be specified by next two steps.

First step, for each fixedk, when dis 1.0, 0.95, 0.9, the

number of segmentation units for apple 13 shown n
Fig. 7. From the Fig. 7, we have the following conclusion:

Corollary3.1: Any value for k, the number of cells 1s
the most when 8 = 1

Corollary3.2: Any value for k, the number of
segmented cells is greatly reduced when & = 0.95, i.e,,
0.95 has an important impact on the segmentation
process, which make flat surface segmentation more
reasonable due to taking the curvature into account
Corollary3.3: Correlation coefficient r between
6 =095 and 8 = 09 of three group data for
k = 30, 25, 20 1s respectively 0.993629, 0.992075,
0.994559, i.e. 0.9 is ingignificance in the segmentation
process

So, for any k, & = 0.95 is the most appropriate.

Second step, for each fixed &, when k 1s 20, 25, 30, the
number of segmentation cells is shown in Fig. 8. From
Fig. 8, we have the following conclusion:

»  Corollary3.1. Figure 8a illustrates, only k-neighbor
segmentation will result in inadequate segmentation
or over-segmentation

+  Corollary3.2.: Any value for 8, k = 30 will result in
nadequate segmentation; k = 20 will result in
over-segmentation and complex iterative process

+  Corollary3.3: Correlation coefficientr between lc =25
and k = 20 of two groups data for & = 0.95, 0.9 1s
respectively 0.991449, 0.972537, 1.e. k = 25 make the
segmentation process more simple and should be
appropriate

Finally, the two step experiments analysis indicates,
8 = 0.95, k = 25 is the best parameters group.

Local fitting: In MLS fitting, the Gaussian parameter
pa m Eq. 8 13 set to 0.3 and then some properties of
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Table 1: Contrast on number of cells between unextracted and extracted apple scans

Scanns Bottom Top Side 1 Side 2 Side 3 Side 4 Side 5 Side 6 Side 7 Side 8 Side 9
Unextracted 7978.0 7213.0 5855.0 5611.0 5841.0 5694.0 54280  5611.0 5963.0 5468.0 5867.0
Extracted 4578.0 4001.0 3035.0 2731.0 2877.0 2802.0 2580.0  2770.0 2907.0 2708.0 2819.0
Decrease ratio/£¥ 42.6 44.5 482 51.3 50.7 50.8 52.5 50.6 51.2 50.5 51.9
*10920(@ K =20 «K =20 K =20 *100 o K =20d=0.95 #K = 25d = 0.95 K =30d=0.95
T — - . ®)
115 " i 85
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Fig. 8(a-c). Effect of k-value on the num of apple cells for different §-value (a) Num of cells for 3 kinds of k-value
without &, (b) Num of cells for 3 kinds of k-value when & = 0.95 and (¢) Num of cells for 3 kinds of k when

8=09

Fig. 9(a-d). Ultimate segmented apple, (a) Bottom, (b)
Top, (¢) Sidel and (d) Dide7

splat are calculated in this simulation. Next,

curvature 1s estimated for the final extraction.

From Fig. 7b and 8b, the improved K-neighborhood
help to reduce the number of cells of apple scans to
3.0% of the original points, a 25% drop than the pure
K-neighborhood (4%).
Extraction resuli: The  extraction  experiment
simulation shows that, parameters for dot product of
normals p = 0.95 in Eq. 12 and
difference € 0.025 n Eq. 13 are feasible for
identifying  apple splats from leaves. Part of
the ultimate extracted apple scans are shown in
Fig. 9.

After extraction, the number of splats declines

surface variance

obviously, contrast on number between before and after
extraction is presented in Table 1. After extraction, the
number of average splats decreased by 49.5% than that of
before extraction.
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CONCLUSION

For quickly and accurately extraction of the apple
shape from clutter background, a K-neighborhood based
adaptive octree subdivision was first employed for
simplifying the point cloud while preserving ability on
detail representation and MLS-based local fitting has
solved "gap" problem among splats. GSA-based recursive
extraction algorithm has avoided processing the leaves
and tree trunks, which minimized number of processed
splats and speed up the extraction process. Experiments
show that the simplification algorithm has made the apple
cells drop to 3.0%, which reduced 25% than K-
neighborhood simplification, the number of extracted
splats decreased by 49.5% than that before extraction. It
can be extended to extract other fruits shape with smooth
surface. However, this work only can be used for smooth
surface extraction and the key parameters were obtained
by orthogonal extraction experiments only for apple
surfaces, it remained to searchung for more theoretical
foundation.
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