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Using Multi-objective Optimization PSO in SVM for Fingerprint Recognition
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Abstract: The problem of fingerprint classification is discussed for many years. Support Vector Machine (SVM)
1s a traditional artificial mtelligence algorithm developed for dealing classification problems. In this study, have
used the core 1dea of multi-objective optimization to transform SVM mtoe a new form. This form of SVM could
help to solve the situation: In tradition, SVM is usually a single optimization equation andparameters for this
algorithm can only be determined by user’s experience, such as penalty parameter. Therefore, this algorithm
is developed to help user prevent from suffering to use this algorithm in the above condition. Tt is has
successfully proved that user do not need to make experiment to determine the penalty parameter C. NIST-4
database is used to assess the proposed algorithm. The experiment results show the method can get good

classification results.
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INTRODUCTION

Pattern recognition has been a frequently
encountered problem with a wide range of application
such as fingerprint, face, voice and so on. The problem
can be summarized to a decision-making process to
distinguish if the test sample is complied with the criteria
made by the database. Generally, the classification
problem can be categorized as binary classification
problems (two-class classification) and multiclass
classification problems (L1, 2003). Nowadays, bnary
classification problem can be solved by many algorithms.
For instance, neutral networls, Naive Bayes classifier,
C4.5 decision tree andalso Support Vector Machine
(SVM). Algorithms mentioned above can be available in
multiclass problems.

Multi-objective optimization idea was arouse recent
years (Raquel and Naval, 2005). This kind of algorithms is
developed on a core idea of Pareto frontier. Before this
idea was lmown for people its can only handle the
optimization problem as a single objective problem as

following:

Min F{x)
subjecttog‘(x)go,i:1,2,....,m )]
h(x)=0 i=12...p

where, x 1s called decision variables, F(x) 1s objective
function and g,(x) and h(x) are mequalities and equalities
constraints. Note that m and p is the number constraints.

However, in realistic application its often have at least two
or more objectives which are not only interacting but
probably conflicting. Generally, a multi-objective
optimization problem can be expressed as:

Min f(x)=[6{z), (), . (5)]

subjectto g, (x)<0,1=1,2, .,m (2)
h{z)=0, i=12,. ,p

The desired solution for multi-objective problems is
in the form of “trade-off” or compromise among the
parameters that would optimize the given objectives.

This study proposed an evolutionary algorithm to
reform the traditional SVM algorithm from a single
objective optimization problem to a multi-objective
optimization problem. The results show that can succeed
to get a feasible solution without knowing penalty
coefficient C and this algorithm is employed to classify
fingerprint classification

Optimization algorithm and svm: This section presents
the essential theory in this study. The definition,
operations andalgorithms for multi-objective optimization
algorithm and SVM are mtroduced as follows.

MULTI-OBJECTIVE OPTIMIZATION

Methodolgy: The defimtion of this problem can be seen
from (1). Multi-Objective Optimization (MOO) deals
with generating the Pareto frontier. Tt is the set of
non-dominated solutions for problems having more than
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one objective. The following definitions are shown in
(Raquel and Naval, 2005).

Definition 1: Assume there are two solutions x, and x,. if
both of them are complied with the following rule its said
%, dominates x,:

vie{L2... N}, F(x ) <E(x )

Fe 1.2, N} E(x ) <E (x,)

3)

X, 18 non-dominated solution while x, is so-called
dommated solution.

Definition 2: A vector of decision variables " c f — %2
is nondominated with respect to v, if there does not exist
another x'e g such that f(x) < £ (x) .

Figure 1 shows the relation of dominated and
non-dominated sets. In this Fig. f1 and f2 are values for
the two objective functions. This example figure is a
model that both fl1 and {2 functions are required to be
mimimized. The dommated solution 15 the green points
(i.e., x,) and the non-dominated sclution is the blue points
(i.e..x;). With definition 1 it is shown that f1 and 2 for the
non-dominated solution are either less or equal to each of
dominated solutions.

Definition 3: A vector of decision variables ' ¢ F-%* is
Pareto-optimal if 1t 13 nondominated with respect to F,
where F 1s the feasible region. The Pareto optimal set 1s
defined by:

P"={x € ¢|x is Pareto -Optimal}

2 @ Non-dominated
® Domainayed Sol.
®
[
[ ]
L 4 ®

f1

Fig. 1: The location of non-dominated solution and the
relationship for a nondominated solutions with
dominated solutions

Definition 4: The Pareto Front PF* is defined by:
PF ={f(x)eR*|xe P}

In MOO problem, to get the Pareto optimal set from
feasible set F of all the decision variables vectors satisfied
constraints 1n (2). As noted by Margarita (Reyes-Sierra
and Coello, 2006), not all the Pareto optimal set is normally
desirable or achievable.

Recently, there are more and more evolutionary
algorithms (EAs) have been developed in solving MOO
problems, such as NSGA-II (Deb et al., 2000), PAES
(Knowles and Corne, 2000) and SPEAZ2 (Van Veldhuizen
and Lamont, 1998). These are all population-based
algorithms which allow them to probe the different parts
of the Pareto front simultanecusly.

Particle Swarm Optimization (PSO) was first
introduced by Kennedy and Eberhart (Kennedy and
Eberhart, 1995). It 15 an algorithm nspired by social
behavior of bird flocking. Tn this algorithm it will randomly
distribute the population of particles in the search space.
For every generation, each particle will move toward the
Pareto front by the formula of updating velocity andthe
best solution for a particle has achieved so far and follows
the best solutions achieved among all the population
particles.

Among those EAs that extend PSO to solve MOO
problems is Multi-objective Particle Swarm Optimization
(MOPSO) (Coello et al, 2004), the aggregating
function for PSO (Parsopoulos and Vrahatis, 2002), or
Non-dommated Sorting Particle Swarm Optimization
(NSPSO) (L1, 2003).

Figure 2 shows this pseudocode for MOPSO, this
figure shows the optimization algorithm structure.

The MOPSO algorithm that adopt is from
(Raquel and Naval, 2005) which used the concept of
Crowding Distance (CD) andit 15 called MOPSO-CD
algorithm. Note that the formula of updating velocity 1s
stated as:

Begin

Intiliazition swarmmn, velocities and best position
Tntialize external archive (usualty empty)

While

For each particle

Select a member of the external archive (if needed)
Update velocity and position

Evalute new position

Update best position and external archive

End for

Fig. 2: Structure of MOPSO-a simple pseudo-code
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V.= WxV, +R,%(PBEST ~B)+R,%(Aye —B) (4

Variables in (4) are:

Vi : Velocity
W : Intertia
R1,R2 : Random number betweenm O to 1

P, : The I-th particle
PBEST, : The I-th particle personal best soulution

P — The pareto best solution in archive

It’s used the following test problems to verify the
umplementation 1s correct.

Multi-objective SVM: That traditional SVM are not able to
optimize for non-positive semi definite kernel functions. ITn
this study its use the formulation from previous research
(Mierswa, 2007). For the
over-fitting and omit the penalty factor C, where the two

reason 1t can control the

objective functions: maximizing margin and minimizing the
number of training errors:

o1 2
minimize _HW “
2

V, = Maximize Margin : ¢ subject to Vi: y, (< w,x, > +b)=1-§ (5)

Yi:£=20
and:
minimize ¥ &;
i=2
Minimze Training Error : 1 subject to vi:y, (< w,x, > +b) 21~ &6)
¥i:E>0

After getting the two objectives, can transform both
of them into dual forms:

Meu«limizezn‘loc1 - lii y]yjoc]cc]k(x‘,xj)
il 20 (7)

subject too, 20 for i:1,2,.....,nam:iz‘{oc‘y1 =0

i=1

Maximize ¥ o, subjectto o, 20 for i=12.....,nand ¥, oy, = 0
i<l i=1
(8)
Note that kix;, %) 1s the kernel function andin this

study 13 used Radial Basis Function (RBF) as kemel
function which expression 1s:

I, x|

kix,, %)) = exp(— '202 )

andused grid search algorithms to determine parameter
in RBF.

The kemel function k(x, x) can be expressed as
product of ®©(x) ® (x). For non-linear classification
problem, the classifier can be reformed as the following
Equation:

£(x,b) = sign(iaiy,k(x, X)+b) (9

i=l

Since, both of (7) and (8) share a commeon term:
Yo

this part of the first objective functions is not conflicting
with the second one in general. Tts can just omit this term
(7).

By formulating the problem b = 0, all solution
hyperplanes will contain the origin and the constraints:

Sy -0
f

will just vanish (Burges, 1998). But if to want the equality
constramt to be fulfilled it can simply be defined a third
objective function:

.
=¥ ey, |
i=1

Thus the problem can be reformed as:

n

‘%22 Yyeosk (X Xj)
p

i=1

&% (10)

Maximize

.
> oy,
=1

By solving (10), can get the Pareto frontier, yet to still
cammot decide which solution on the Pareto frontier is
what to need. In previous research, have two ways to
decide the solution: Maximum margin model and
prediction. Two ways to search the final solution are
stated as following:
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Maximum margin model: Calculate (11) for particles on
Pareto frontier and choose the one with biggest value for
result of (11):

non

. 1
Eccfazzy‘yjocjocjk(xj,xj) (1)

i=l il =l

Minimum prediction error: Calculate (11) for particles on
Pareto frontier and choose the one with biggest value for
result of (11):

1 if y#f(x

0 otherwise

l(y,f(x)):{ )E[szgl(yp’fp(xq)) (12)

The variable k is for a small hold-out set of the
data points of size. These k data p oints were part
of the input traiming set and are not used by the

learmmer during optimization process. After fimsh
optimization, the learner is applied to all k data
points. 1(y, f(x)) is just the binary loss andfor p-th

particle the errors is B Just plot all errors E, and
compare 1t with the original Pareto front andchoose the
place where the training error and the generalization error
are close to each other. This way was proved to control
over fitting.

RESULTS

In this study, there 1s no research to suggest the
appropriate value of k m (12), can try another way to
determine the error: Use all of training set for MOO
process and k is equal to the number of training set
samples. In this research it is proved to be useful in
determine the final solution too.

200
180
160
140

X» 120
100

80

60

40

20

oO

20 40 60

X1

To check if this implementation is feasible its use
2,000 randomly distributed samples in Fig. 3.

Figure 3 is an example that 2,000 samples with two
variables (x;, x;), this figure just shows two sets can be
separated by a limear classifier. This figure shows the
distribution of the two sets (red and blue pomnts). This 15
a simple example but can be easily verified the algorithm
in this study.

Note that in the original research (Gao and Er, 2003),
the author proposed another way to determine solution
from the Pareto frontier which can be shown as following:

s Separate the training set, tale out about 20% set from
the training set as a test set

»  Follow (12) to calculate the prediction error with the
result of training error to form another plot andthen
user can determine the solution they desired to avoid
over-fitting for SVM result

Figure 4 is the Pareto frontier for Fig. 3. The x-axis is
the objective function for Training error in the second
equation from (3) and the y-axis shows the value of
Margin size in the first equation from (3).

Compared with the method to took from Fig. 5-6 its
simply found that can get the same result for Fig. 3 which
proved this way is feasible and in some cases, more
intuitive.

Figure 7 18 the way proposed from the original
research (Gao and Er, 2003). It transferred the traming
error from Fig. 4 and normalized it with total number of
Pareto-optimal solutions. As  the original authors
pointed, this figure can help users to choose solutions
without over-fitting for the solution where the
traiming error and prediction error are the closest in the
figure. This study proposed the way to choose
classifier in Fig. 5 and 6 because in real application
its often just need the smallest prediction erroras a

Class 1: Red point
Class 2: Blue point

_Classifier: Black line

80 100 120 140 160 180

Fig. 3. Samples test if the classifier is feasible: The horizontal axis x, and vertical axis x, are the test sample which is

composed of (x,, x,)
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Pareto frontier
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Margin size
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-13007

-1400
800 900 1000 1100 1200

Training error

1300 1400

Fig. 4: Pareto frontier for samples results in Fig. 3. The
vertical axis 1s margin size calculated by (11) and
the horizontal axis is training error which is
calculated by (12)

Max margin

0

Margin

1 1 1 1
0 20 40 60 80 100 120
No in pareto solution

-900

Fig. 5: Maximum margin for pareto solutions i Fig. 4.
The vertical axis value is the same as Fig. 4 while
the horizontal axis is every solution in Fig. 4

Prediction error

100
900 |
800
700
600

Error

T 40 60 80 100 120
No in pareto solution

Fig. 6 Prediction Error (in this research) for pareto
solutions in Fig. 4. The vertical axis value is the
same as traimng error in Fig. 4 whale the honzontal
axis 18 every solution in Fig. 4

Generalization
07 4 ) ! % Tréining arrol
06 Prediction error |

05 P - L g

04

Error

0.3
0.2

0.1

0.0 . i, IR Vs .
0 10 20 30 40 50 60 70 80 90

Fig. 7. Prediction error and traming error comperisorn:
The y-axis denotes the prediction error for the
training(+) and testing(*) data andthe x-axis
denotes a counter over all Pareto-optinal
solutions ordered by traiming errors. Note that all
the error are generalized

pointer and this 1s more intuitive for user to understand
the rule to choose suitable Pareto solution.

In this example, the generate 100 particles,
100 generations, 100 capacities for extern archive,
probability 50% for mutation and 1.4 for inertia w. By
using result from Fig. 6 its still can find a good classifier
to 100% distinguish two classes. Note that in this example
is used the grid search algorithm to determine the o of
RBF as 0.001.

FUZZY IMAGE ENCODER

Fuzzy logic provides human reasoning capabilities to
capture uncertainties. That cannot be described by
precise mathematical models (Mierswa, 2007). And fuzzy
logic can able to the reasoning with some particular form
of knowledge (Sagar et al., 1995).

Pattem identification 1s essentially the search for “the
structure” in data andfuzzy logic 1s able to model the
vagueness of “the structure” There is an intimate
relationship between the theory of fuzzy logic and the
theory of pattemn 1dentification. The relationship 1s made
stronger by the fact that fingerprint patterns are fuzzy in
nature (Ghassemian, 1996).

In a rule-based fuzzy system to mspect fingerprint,
typical rules may be:

s IF the bifurcations are PLENTY in the UPPER-RIGHT
CORNER THEN the userid is Alex

s IF the bifurcations are PLENTY in the LOWER-
RIGHT CORNER THEN the user id is Bob

s TF the bifurcations are PLENTY in the UPPER-RIGHT
CORNER AND the bifurcations are THIN in the
LOWER-RIGHT CORNER THEN the user id is
Charles
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¢ Therefore a “fuzzy feature image” encoder is applied
for representing “the structure” of bifurcation point
features extracted from fingerprints. The fuzzy
encoder 1s a kind of transformation from crisp set to
fuzzy set

The fuzzy encoder consists of three mam steps:

¢ TFirstofall, a 512x512 fingerprint image is segmented
into 8x8 grids andthe width of each grid is 64 pixels
as shown in Fig. 8. A fuzzy set 1s associated with
each grid region which is shown in Fig. 9. It’s use
cone membership function to design the fuzzy
encoder. The process of the fuzzy encoder is
described as the following three steps

*  Inthe second step a membership value 1s considered
for each fingerprint bifurcation, wherein a cone

MO L e T T

Fig. 8 A sample image with the bifurcation points in
88 grids

Fig. 9: Membership functions of the fuzzy encoder

membership function is performed for each grid in order to
present the structure of bifurcation features (Fig. 9). The
results of this analysis are used to get the membership
value of the bifurcation to the fuzzy sets considered in
previous step. The membership function of grid (i, j)
1s computed as:

.. & Distan ceToGridCenter,
D=31- n (13)
nii-J) 2( Gridwidth }

n=|

where, p (1, 7) 18 the membership function of gnid (3, 3), m 1s
the number of bifurcation points near the center of grid
(1, 1) andthe Grid Width mn this study 15 64.

Fmally, calculate the sum of membership degrees in
each grid. Then the fuzzy image of fingerprint bifurcation
structure 18 obtained in the third step.

The gray level value of fuzzy image is computed as:

255 if wu(ij)=1
w(i,)x255 if o<p(ij)<1 (14
0 if n(ijj<0

F{i.j)=

where, F (4, j) is the gray level value of grid (4, j) in a fuzzy
image which is shown in Fig. 10.

EXPERTMENTAL RESULTS

In this study, has proposed a new algorithm to
transform traditional SVM into multi-objective dual form
and use MOPSO-CD algorithm to solve the dual problem.

Fig. 10: The fuzzy image of fingerprint bifurcation
structure
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To train the dataset in NIST-4 into this algorithm, take the

fuzzy encoder into a 1x64 array to represent this image
sample.

The way proposed in this research to choose suitable
Pareto solution in Pareto frontier is lightly different from
the original research (Gao and Er, 2003). The criteria in this
study 1s more intuitive than the original way. The original
way 18 used to choose solution with the smallest
over-fitting condition, yet the proposed way in this study
focused on the intuitive way for user to determine the
solution. The former way requires users to own more
knowledge of SVM and Multi-objective optimization, yet
the way in this research only requires users to know to
choose the solution with the minimum training error or
max margin it should be more mtuitive and comply with
the central idea of this study-to provide researchers the
more easier way to use SVM without trial and error on
determining the penalty coefficient C.

CONCLUSION

In this study, has developed a multi-objective
optimized SVM algorithm which 1s proved effective for
binary-class fingerprint classification. This algorithm can
reduce the work from manually operation for testing suit
parameters of SVM. Note that even if without this
algorithm, people still can spend lots of time building
figures m this research. The suggested a more logical and
more time-effective way to evaluate the proper SVM
parameters compared to other literatures.

However, that did not apply the algorithm to
multi-class labeled problem. As a future work, has should
put this algorithm forward to applying to multi-class
problem.
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