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Abstract: This study considers an entropy model for portfolio selection with fuzzy returns. Due to lack of
historical data and the uncertainty of return on investment, mvestors suffer big risks during the mnvestment.
It 18 particularly important for investors to get a lot of expected return without getting a lot of risk. In this study,
through comparing with variance, fuzzy entropy is introduced as a risk measure and a fuzzy entropy based
portfolio model is proposed The expected return rate and risk level in this model can be easily modified
according to the decision maker, thus the model has more agility. Then hybrid optimization algorithm based on
fuzzy simulation 1s proposed to solve the model that the rate of return on investment 1s random fuzzy variable,
thus greatly improves utility of the model. To illustrate the effectiveness of the proposed algorithm, one example
is presented. Examples analyses have confirmed the feasibility of the algorithm above.
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INTRODUCTION

Investment risk refers to the uncertamnty of future
mvestment income and it 1s the possibility of loss in
revenue even the principal. Diversification can reduce the
risk of investment, due to the offset of portfolio risk when
assets spread geographically. In recent years, many
researches have contributed to maximize the income on
investment and minimize its risk. In Markowitz (1952)
proposed the mean-variance model (MV model) that forms
the basic framework of the modem portfolio theory. Due
to the limitations of the MV model in using to measure
risk, some researchers have proposed modified models
based on MV model. For mstance, Markowitz (1959) used
semivariance to instead of variance in his later
publication. Sharpe (1963) described the advantages of
using a particular model of the relationships among
securities for practical applications of the Markowitz
portfolio analysis techmique. Pan (2010) employed
uncertainty measure in VaR and CvaR defimtion under
uncertain environment and built a portfolio optimization
model based on risk management with VaR and CvaR.
Yeng and Tang (1998) studied the portfolio without short
sale and presented the character of efficient frontier and
portfolio  investment decision method. Yao (2009)
described securities return rate as fuzzy variable and
presented a portfolio model based on credibility theory.
The entropy concept was applied to the quantities of
material thermal state at the earliest. Tn the 1940s, by
introducing the entropy to theory of information,
Shannon defined the entropy concept as comentropy
and wused 1t to measure information uncertainty.
With the development of credibility theory, Liu and

Lui (2002) combined credibility theory with comentropy.
Based on the modified theory, the accuracy of fuzzy
measurement is improved. Tn these existing portfolio
models, due to the msufficiency of statistical analysis of
historical data, it 1s difficult to define random distribution
of each asset. In this study, fuzzy entropy is introduced
to mnvestment portfolio and used to estimate risk. Based
on fuzzy entropy, a risk measurement model is proposed.

PRELIMINARIES

Let © be a nonempty set, P(@) the power set of @ and
Pos a possibility measure. Then, the triplet (0, P (0), Pos)
is called a possibility space. A fuzzy variable £ is defined
as a measurable function from a possibility space (0, P
(®), Pos) to the set of real numbers.

Let £ be a fuzzy variable taking values in (0, P (®),
Pos). For any fuzzy variable £ with membership function
p(x), we have:

u(x)=Pos{BeBIE(D) = x}, xeR (1)
Definition 1: (Liu and Liu, 2002) Let (8, P (®), Pos) be a
possibility space with A is an element in P (®) and A°® 15

the complement of A. Furthermore, based on possibility
measure, credibility measure 1s defined as:

Crii}= 17(1 + Pos{A} — Pos{ A"} (2)
2

for any Ac2® Tt is easy to check that satisfies the
followmng conditions:
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o Cript=0andCr {R}=1

e AcBimplies CriA} <Cr{B} for any A, Bc2" Thus, Cr
is also a fuzzy measure defined on (R, 2¥). Besides, Cr
is self dual, i.e., Cr{A} = 1-Cr {A"} forany Ae2®

Definition 2: (Tiu and Tiw, 2002) Let £ be a fuzzy variable
defined on the credibility space (8, P (@) Cr). Then its
membership function is derived from the credibility
measure by:

u(x)=(2Cri€ =x})Al, x eR (3)

Membership function represents the degree of
possibility that the fuzzy variable £ takes some prescribed
value. For example, the membership degree p (x) = Oif x 1s
an impossible point and p (x) = 1 if x 13 the most possible
point that £ takes.

Definition 3: (Liu and Liu, 2002) Let £ be a normalized
fuzzy variable. The upper expected value, E [E], of £ is
defined by:

B[E]= [ " Pos 2 ridr - [ Nee @ < rjar (4)
while the lower expected value, E [£], of is defined by:

BIE] - [ " Neo 2 rjdr - | Posfe < rhr (5)
The expected value of £ is defined as:

BIE]= [\ Cr 2 ajdr— [ Crig < rjdr ()

When the night-hand side of (6) 15 of form oo-ec, the
expected value 1s not defined.

Definition 4: (Tiu and Tiw, 2002) Let £ be a discrete fuzzy
variable taking values in (3, X,,...). Then, its entropy is
defined by:

H[E] = iS(Cr{ﬁ =x}) (7

where, S (t) = -tInt- (1-t) In (1-t).

It 15 easy to verify that S(t) 13 a symmetric function
about t = 0.5, strictly increases on the interval [0, 0.5],
strictly decreases on the interval [0.5, 1] and reaches its
unique maximum In2 at t = 0.5. It is clear that the entropy
depends only on the number of values and their
credibilities does not depend on the actual values that the
fuzzy variable takes.

Theorem 1:Suppose that £ is a discrete fuzzy variable
taking values in (X, X;, ...). Then, H [£]=0 and equality
holds if and only if £ is essentially a crisp number.

This theorem states that the entropy of a fuzzy
variable reaches its minimum 0 when the fuzzy variable
degenerates to a crisp number. In this case, there is no
uncertainty.

Theorem 2: Suppose that £ is a discrete fuzzy variable
taking values in (X, X,,....). Then, H[E]>nlIn2 and equality
holds if and only if £ is an equipossible fuzzy variable.

This theorem states that the entropy of a fuzzy
variable reaches its maximum nin2when the fuzzy variable
is an equipossible one. In this case, there is the most
significant uncertainties.

Definition 5: (Liu, 2004) Let £ be a continuous fuzzy
variable. Then its entropy is defined by:

H[E) - [ S(Cr(E - (8)

where, S (t) = -tlnt- (1-t) In (1-t).
For any continuous fuzzy variable £ with membership
function p(x), we have:

vxe R, Or{E = x} = uix) )]
2

Thus:

I e B e
= - o -5 (10)

In(1— @))dx

Theorem 3: (Liu, 2004) Let £ be a continuous fuzzy
variable. Then, H [£]>0.

Theorem 4: (Liu, 2004) Let £ be a continuous fuzzy
variable taking values on the mterval [a, b]. Then
H [£]<(b-a) In2 and equality holds if and only if £ is an
equipossible fuzzy variable on [a, b].

Theorem 5: (Liu, 2004) Let £ and 7 be two continuous
fuzzy variables with membership functions p (x) and v (x),
respectively. If vxeR, u(x)<v (x), then, we have:

H[E]<H[n] (11)

Theorem 6: (Liu, 2004) Let £ be a continuous fuzzy
variable. Then for any real numbers a and b, we have:

H [a&+b] = [a| H[Z] (12)
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PORTFOLIO MODEL BASED ON FUZZY ENTROPY

Portfolio investment refers to investment behavior
and process that mvestors could obtain bonus, mnterests
and capital through purchasing stock, bond and fund.
The main object for any mvestor 1s to obtain payoff, but
sometimes they will face with various choices. Some
mvestors mtend to maximize the benefits under a certainty
risk. Others intend to minimize the risk under a certainty
income. For varlous mvestors, risk measurement is
different due to the different criteria used. However, there
15 still no risk metrics to satisfy the requirement of
investors. According to research, variance is an effective
risk measurement under the assumption that portfolio
returns are normally distributed. Owing to the complexity
and variability of securities market and uncertainty of
return rate distribution, the choice of risk metrics is
particularly important for optimal portfolio of assets. In
this study, we chose entropy to measure investment risk.
Compared with varance, fuzzy entropy has certain
advantages. The main limitations of using variance as a
risk measure 1s that variance considers extremely high and
extremely low returns equally undesirable. An analysis
based on variance seeks to eliminate both the extremes.
Thus, when probability distributions of asset returns are
asymmetric, variance becomes less appropriate measure of
portfolio risk. However, the fuzzy entropy measure does
not have strict requirements on the distribution
characteristics of risk variable. Secondly, variance only
demonstrates the second order moment of risk variables,
but fuzzy entropy could describe several order moment,
thus, fuzzy entropy 1s more proper for risk measurement.
Thirdly, a variance calculation based on statistical data
has the characteristic of lag, while fuzzy entropy based on
unbiased estimates of probability distribution shows a
predictive role. Fourthly, covariance matrix used in
variance risk measurement is quite complicated, while risk
measurement according to fuzzy entropy has simple
calculation process:

¢ Tn order to obtain maximum expected return with risk
no higher than ideal nsk, we may employ the
following fuzzy entropy model:

max minE[x & +x,& +..+x & ]

s.k.

max x H[E T+ HE ]+ +x HE 1SR,
XA, +etx, =1

x,=20,i=12,..n

where, x = (%, Xs.., %) 1s decision vector,
EELE, .., E)"is vector that consist of n risky
assets. Ry 18 said to be acceptable level of nisk, then

max x,H[E [+FxH[E] + ... +x,H[E,]<R, indicates that
the risk of investment returns is less then R; m any
case. Min E[x,£ +x.£+. 4% E | represents return in the
worst case and Max min E[x£4xE+  4xL]
represents optimism returns in the worst case

»  In order to mimmize mvestment risk under a certain
expected return rate, we may employ the following
fuzzy entropy model:

min max x,H[E ]+ x,H[E]+...+x H[E ]
st

min E[x&+x8, +..+x, 81 <R,

X t+x,+t+x =1

x,20,i=12,.n

HYBRID OPTIMIZATION ALGORITHM BASED ON
FUZZY SIMULATION

Traditional algornthms are to transform fuzzy expected
value models and goal programming models mto the
corresponding equivalence class. However, fuzzy entropy
risk measurement model is difficult to translate into the
corresponding equivalence class. In this study, we
integrate fuzzy smmulations and genetic algorithm to
produce a powerful hybrid intelligent algorithm. The
procedure to solve general portfolio models is summarized
as follows:

s+ Step 1: Define pop size, crossover probability p,,
mutation probability p,, and iterations N

»  Step 2: Imtialize pop size feasible chromosomes
randomly, 1ie, C, C, .., Cou To ensure
X =(x,, %, ... X,)" subject to x,+x,+...+x, = 1, makes:

c .
X, =——,c,€[01]i=12,..,n
¢ +e,+..+c,

¢+ Step 3: Employ fuzzy simulation to check the
feasibility of chromosome.  Calculate Cr
ix &8+ x £ <1} Randomly generated 8, from ©
which satisfies:

cr{e )z =
2

while v, = (2Cr{B,} A1, £ is sufficiently small and N is
sufficiently large, we may obtain:

orixé +x8 +.x 8 <=

%( max {v |x,& (8 1x,E (0 . +x £ (B)y< i+

min (1-v/x,§ (8, 14%,5, 0,1+ +%,£,(8) 1)
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¢ Step 4: Calculate the objective values for all
chromosomes by the fuzzy simulation based
algorithm and the algorithm 1s given by:

E [x& x5+ 4x,5] = Blf(x, £)]

*  Step 5: Compute the fitness of each chromosome by
evaluation function based on the objective values.
The evaluation function is given as follows:

eval (C) =w(l-a)"' =1,2,.., Pop size

*  Step 6: Select the chromosomes by spinning the
roulette wheel

* Step 7: Repeat the second to fifth steps. Then
terminate the whole prodecure when a given munber
of cycles is met

¢ Step 8: Report the best chromosome as the optimal
solution

NUMERICAL EXAMPLE

In this section, we consider a numerical example to
llustrate the procedure of solving fuzzy entropy model by
the hybrid optimization algorithm. Tn this example, let
pop_size be 30, crossover probability be 0.3 and mutation
probability be 0.2, then fuzzy variables are defined as:

£=(-0.015,0.015,0.015),
£,=(-0.02,0.015,0.015),
£,=(-0.02,0.01,0.01),
£€,=(-0.02,0.025,0.025)

C language programming is used to solve this model,
a run of a genetic algorithm iteration shows that the
optimal solution is (0.6428, 0.02412, 0.0645, 0.0515)
and H [E] = 0.0013.

CONCLUSION

In this study, we have described mvestment yield as
fuzzy variable under fuzzy enviromment. In comparision

with variance, we chose fuzzy entropy to measure risk.
Then, we have established a new risk measurement model
based on fuzzy entropy. Furthermore, we have designed
genetic algorithm with fuzzy simulation and proposed
general solution of model problems. To illustrate the
effeetiveness of the algorithm, numerieal examples are
given and performed. The results show that the algorithm
can be a good solution to optimal portfolio problem.
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