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Abstract: Dimensional reduction 1s crucial to machine condition monitoring and diagnosis since the extracted
features are often redundant and heterogeneous as well as high dimensional data often are embedded in lower-
dimensional manifold. Inspired by manifold learning and multiple-kernel learning theory, multi-kernel principal
component analysis with discriminant manifold (DMMKPCA) is proposed for host fault monitoring and
diagnosis. The method not only preserves the local and global structures of data set but also handles
heterogeneous characteristic sets, which inherits the excellences of LPMVP and multiple kernel learning. A two-
stage iterative optimization algorithm is proposed to obtain the optimal combining weights of multiple kernel
functions and parameters of each kemel functions. A case study of hoist illustrates the efficiency of the
proposed algorithm on the information extraction and fault detection.
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INTRODUCTION

The research on fault monitoring and diagnosis is the
hot topics 1 the mechamical community due to the wide
applications of large scale machine equipments. In the
past decade, many successful applications of the
machinery monitoring have been reported (Lei et al., 2011,
He, 2013; Wang ef al., 2011). Most machinery momnitoring
researches mamly focus on the removal of undesired
uncertainties, extracting features that capture the
underlying operation patterns of the machine and online
fault detection methods like pattern classifiers in a
supervised way and fault momtoring statistics like
Multivariate Statistical Process Control (MSPC) in an
unsupervised way.

In machinery monitoring, features are extracted from
time and frequency domains of vibration signals which are
are heterogeneous and mutually complementary. The
underlying signal can be adequately exploited by a linear
combination of kernels at different scales can effectively
enhance performance of kernel machines (Lin ef al., 2011).
Although these features extracted from. Although these
features extracted from mechanical signals are high
dimensionality, those often lie n a nonlinear manifold with
low dimensionality (Wang, 2010, Jiang ef al, 2009).
Manifold learning can explore the low-dimensional latent
representation corresponding to high-dimensional data,
which 18 an efficient dimensionality reduction approach,

successfully applied into machinery monitoring and
process monitoring (Wang, 2010, Jiang et al., 2009; Yu,
2012).

Inspired from mamfold learning and Multi-Kernel
Learming (MKL), a novel multiple-kemel principal
component analysis with discriminant manifold algorithm
(DMMEKPCA) is proposed. Firstly, through multiple
explicit empirical feature mapping functions, the original
data with heterogeneous characteristic are mapped to
multiple high- dimensional feature spaces which can be
regarded as various views of input data. Secondly,
features are extracted by manifold learning and the latent
data m the low-dimensional space approximately follow
Gaussian distribution. Meanwhile, the global and local
geometrics of the data are preserved. Tn order to remove
the redundant kernel functions, an optimization algorithm
1s proposed. Finally, the feasibility and performance of the
proposed method for hoist fault detection are illustrated.

DMMKPCA ALGORITHM

As a traditional multivariate projection method,
although PCA can preserve the global geometric structure
of data and discover the manifold which lies 1n data set, it
does not describe the mamfold. Locality Preserving
Projection (LPP) can describe the low dimensional
manifold, which takes the local mformation of data set into
account. However, the global or non-local mformation in
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data set may be lost (Yu, 2012; Zhang and Song, 2009).
DMMEKPCA is propoesed to reduce the dimensionality of
high-dimensional data with heterogeneous feature sets by
mtegrating mamfold learming with multiple kernel learmng.

Given a matrix X = [x,, X,, ..., %,| with €R", a high-
dimensional feature mapping function, ¢p({x), corresponds
to a positive definite kernel function, k(...) which is
computed by:

k(x, x) = dx)" d(x)

where, ¢(x;) is assumed to be centered. DMMEKPCA
intends to seek a projection matrix W*eRFFM in feature
space such that the local geometry of the reduction data:

Y =[W'o(x) [ e RM

it

is similar to that of original data. Thus the global
information of data set can be preserved as well
simultaneously.

Laplacian adjacent matrix 1s constructed to
approximate the local geometry of points, which 1s defined

by [J:

o o exp ¢(XJ)_t¢(Xx)

1

K ERN(x ) orx e kN(XJ)
0 otherwise

where kIN (x) 1s the neighborhood of x,, 3%, represents the
similarity between the two neighbor samples and t 15 a
constant associated with samples. The optimization
problem of DMMKPCA is formulated as follows:

N
s () =mp Bl i 50 M

LR
Tttt oa { WE) = mae Py 2)

ko
relo1]
2
= )
(wiwt)=0j=12-k-1

Where:
N
= Suta(x ) /5

The value of 5% increases with their similarity. Therefore,
the local information of data set is preserved by exploiting
the Laplacian matrix.

The above problems is rewritten as:

En:(yjk *Hﬂl;)z = i(wﬁcjy(x‘ )7}‘,};)2 — W Ctw! (4

i=1 il

3 yf‘—yﬁ‘”zsjf=w§TF(DW—sW)FTwﬁ (5)

i,j=1

Where:
N
b~ ding DD | DF - 355
=

and L™ = D"-8¥ The two above optimization problems can
be integrated into an overall optimization problem with
constraints in Eg. 3, which is formulated as:

oy _ wiTChwl 6
m“%xj(wk) wi'F (DY - S*)F "w} ©

The advantage of doing this is that the projection
vectors are uncorrelated and the geometrical structure of
low-dimensional representations is consistent with that of
original input data. The derivation can be briefly deduced
as follows. Denote the solution of optimization problem
by W, the distance between two lower-dimensional
representations, y, and y,, is calculated as follows:

y‘nyH:J(X‘ij)T WWT(X‘ij)

Dist(y],yj):|

Note that WWT is an identity matrix, which leading to
Dist (y,, v;) = |%-%],. Generally, the formulation of (-) is
implicit and the dimensionality of w®, is very high, even
infimite. As a result, Eq. 6 1s not mtractable. To address
this 1ssue an explicit Empirical Kemel Map (EKM)
{(Zhu et al., 2009) is introduced. Let K = QAQT be the
rank-r SVD of a kernel matrix K, i.e. QeR™, B =KQA™,
the explicit kernel map ¢%(-) is defined as:

o (x)= AT [ker(x,xl),---,ker(x,xNﬂT

The det product on EKM matrix is calculated by (@7,
@ = K, indicating that span{¢“(x)}. Whilst, the empirical
kernel space 1s easier to mterpret and optimize.

For k = 1, the Lagrangian equation corresponding to
the above optimization problem in the absence of the
constraints can be written as:

J(Wﬁ):WﬁTC‘PWﬁ 7Y(WtTF (D"’ 7SW)FTWﬁ) (7
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Setting derivatives of the Lagrange with respect to
W, zero, we have:

81(w} )/&w, = 2w +—2y(F (D" -8")F "wi)=0 ()

The optimum w,* can be achieved by solving the

following generalized eigenvalue problem:
(F(D” —s“’)FT)'l Cwl = yw! ©)

where w,* is the eigenvector corresponding to the largest
eigenvalue of matrix.

-1

(F (D~ 7S"’)FT) ct

For k=2, the optimal w?, is obtained in a similar way.
For the sake of simplicity, we define Le = C* and Ri = @
(D"-SYDT". The Lagrangian function associated with (6)
and (3) 1s written as:

J(Wﬁ):WﬁTLeWﬁ —wi'R w! 7%“1(“’;““’2) (10

i=l

The Lagrangian derivatives with respect to w?, and
¢, are set to zero, then we get:

o, =wL wh —yw!'R wt (11)
Let:
W(k—l) = [waf WL]
and @ = Wi R, “W,_, . Substitute (11) into (10) and note

that ww? =0, i#LLj=L2- k-1 we get:
=R W, W IRL w = yw! (12)

where, I 1s an 1dentity matrix. Given a new sample x, the
projected data is calculated by

y=wWT¢" (x)= wIA-PQT [ker(x,Xl),'——,ker(x,xN)]T

SELECTION OF DMMEKPCAMODEL PARAMETERS

MKL can be deemed as a relaxed version of kernel
method by replacing a kemel fimction with a linear
combination of multiple kernels, dealing with the problem
of the choice of kemel function in kemel methods.
Specifically, given L base kemel functions k (x;, x)

satisfying mercer condition, a linear combination of these
base kernel functions 1s defined as:

k() = 30 Bk (30 )

with B> 0 and:

E;Bl =1

Geometrically, the linear combination of kernels can be
interpreted as taking the Cartesian product of the
associated feature spaces. From view of multi-view
learning (Wang et al, 2008), MKL can capture the
different ‘views” of the problem or features from different
sources (Fig. 1, 2). Compared to wavelet transform, MKL
can also decompose data set into different scales (Fig. 2).
In this article, we make use of these two properties of
multi-kernel learning to enhance the capability to deal with
nonlinear heterogeneous features.

In order to remove redundant kernel functions, CCA
15 utilized to extract the common information from two
views with different and specific sets of features by
maximizing all the correlations between the projections of
pairwise feature sets, which can be equivalently transform

mnto a distance mimmization problem as follows
(Wang et al., 2008):
B‘
F \ Vi,
.‘ [;m v : T¢4fXI)
. —> — =AK"B

/‘ F
Fu
(a) (b) (©) (d)

Fig. 1: MKL for different representation

Fig. 2: Multi-resolution analysis of MKL
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M 2 M
min ¥ HBkK(kLBIKU)H st YB =1
Ry d el

where, M 13 the number of specific feature sets.

In simulation, the initial values of kernel parameters
are as follows: Calculate the standard variance o, of data
set, then parameters of base RBF kemels are set as:
0,=0,%,1=05,1,1.5,2,25,3,35,4,45,5.
DMMEKPCA APPROACH TO HOIST MONITORING

In multivariate statistical control, conventional
process monitoring methods, such as PCA, LPMVP, etc.,
often use fault statistics T° and SPE under the assumption
that the latent vectors are normally distributed with zeros
meann. Giwven a sample x, 1its low-dimensional
representation is v, = W*' ¢(x) through DMMKPCA.
Original variable {p(x;) can be decomposed into principal
space and residual space, respectively. Followimng
conventional multivariate statistic process monitoring
methods, we develop Hotelling T and SPE menitoring
statistics on Y and F respectively. T? statistic on Y is

calculated by:
2 d(N-1)/(N-d)

where A = YY"/(N-1} is covariance matrix, Fy 4 , is F-
distribution with d and N-d degrees of freedom at the
significance level ¢. Under the assumption that a residual
vector 1s multivariate normal, Q-statistic SPE on F 1s

calculated by:
SPE=e'e ~gx; <SPE, = gy. .

where, gy, is ¥ -distribution with scaling factor g and h
degrees of freedom at a significance level ¢ (Xie and Shi,
2012). For Q-statistic, g = 3/2p and h = 2p%/3 are estimated
based on the matching moments between agy’,
distribution and the reference distribution of &, where L,
S are mean and variance of &. If the statistics of a new
sample fall into these limits, the process 1s considered to
be in control statistically.

SIMULATIONS

Hoist plays a very important role in coal production.
The task of hoist 1s to pull coarse coal and workers from
ground to coal, or vice verse. Hoist system is compose of
motars, control unit ete (Liu et al., 2012a). In this study,
only speed reducer 1s studied to illustrate the efficiencies
of DMMKPCA for hoist monitoring.

The vibration signals with 3 working loads are
collected from three sensors with sampling rate 10 Hz in

04 1
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Fig. 3: Vibration signals with three working loads under
normal conditions
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Fig. 4. Two types of fault (cracks of outer and mner
races)

normal operations, the sampling time lasts 200 sec for
each mode. Some of measurements are illustrated in
Fig. 3. Two types of fault data associated with crack of
outer and inner races are obtained from history database.
The number of data associated with each type of fault 1s
10000x200=2000000, which are illustrated in Fig. 4.

Before the application of the proposed algorithm, the
vibration signals must be preprocessed, such as removing
noises from signals, normalization etc. In this simulation,
we generate the following different representations
(Liu et al., 201 2b; Ghoraani and Krishnan, 2011; Zhuet ai.,
2009):

*  Time representation: Standard variation, correlation
coefficient, Kurtosis,
coefficient are generated from time domain of signals

»  Frequency presentation: HHT 1s used to decompose
signals into multiple scales and find “true” intrinsic
mode functions (IMFs) (Liu et al., 2012b). Then,
features

Skewness and fractal

such as amplitude, phase, transient

frequency, weighted frequency, average amplitude,
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Spectrum of normal vibration data—3 load
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Fig. 5: Spectrum of normal signals with three working
loads
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Fig. 6: Momnitoring results of DMMKPCA

Table 1: Data representations
Representation

No. of variables

Time 6
Frequency 11
Time series (AR) 5

Kurtosis, moment energy and residual energy are
generated from those selected IMFs
» Time series model representation: Robust time
series AR is used to model vibration signals, the
associated AR coefficients and fitting residual
energy are taken as features
To study the characters of wvibration signals,
frequency spectrum of the signals are obtained by FFT
(Fig. 5). It 13 obvious that most of spectrum concentrates
m 1000 Hz and double-frequency 2000 Hz. For the sake of
simplicity, 2048 points are regarded as one unit and
features are generated from one unit. Table 1 illustrates
the number of dimensions associated with above data

18+ . '
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g “im’h *m'liﬁj
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Sample

Fig. 7. Monitoring results of KPCA

representations. We establish 440 samples for 3 normal
working loads and 40 samples for each type of fault.

Inthis simulation, Gaussian kernel functions are used
as base kernel functions and half of training samples are
randomly sampled from normal samples, the remains are
used as test samples. Five base kemel functions are used
for each data representation. The number of samples in
neighborhood set is 4. ITn DMMKPCA, the weights of
kernel functions are mitialized to 1/12, the maximum
tteration 1s 100. After the optumal weights are obtained, we
remove the redundant kernel functions whose weight is
less than 0.001, 11 kernel functions are retained to perform
DMMEKPCA. The number of reduced dimensionality 1s 7
which 1s selected by cross validation.

Monitoring results of DMMKPCA on 220 normal
samples and 80 fault samples are shown in figure 6. Figure
6 shows T? on normal samples falls into the control limit
while T? on fault samples is outside of control limit. To
measure the performance of fault detection, detection rate
is defined as the percentage of the samples outside
control limit at a sigmficance level 99%. The detection rate
of T* on fault samples is 52% while detection rate on
normal test is 4%. The detection rate of T* on fault
samples is 43% while detection rate on normal test is 5%.
Furthermore, To evaluate the fault detection capability of
the proposed method, we compare our algorithm with
KPCA. The monitoring result of KPCA is demonstrated in
Fig. 7. the detection rates of T? or SPE on normal samples
(1.e. alarm rate)s over 25% while that on fault data 1s less
than 20%. Irrespective of the alarm rate and detection rate
on fault samples, the detection ability of the proposed
method outperforms that of KPCA.

CONCLUSION

As anovel nonlinear dimension reduction algorithm,
DMMEKPCA can exploit different complementary
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representations and explore local and global geometrics of
data set and work well on complex data from multiple
sources. The projected data in latent space approximately
follow Gaussian distribution, which is very convement to
develop fault statistics and perform online fault
monitoring. The model complexity is controlled by
removing redundant kernel functions as well. The present
worle highlights the promise of DMMKPCA approach to
machinery monitoring. However, it should be further
mvestigated as to how to determine the number of
reduced dimensionality and the proper parameters of
kernel functions.
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