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Abstract: A new nonconforming H'-Galerkin mixed finite element scheme of semilinear parabolic equations is
proposed. The same optimal error estimates is presented and the error estimates are obtained by use of the
interpolation operator instead of the conventional elliptic projection which is an indispensable tool in the
convergence analysis of traditional fimite element methods m previous literature.
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INTRODUCTION

As we all know, the parabolic equations has been
found applications in many physical problems, such as
the heat conduction problems, the transport problems of
humidity m soil, the porous theories concerned with
percolation into rocks with cracks and so on. But many of
these researches are based on the classical regular
assumption or quasi-umform assumption for meshes.
However, the domain considered may be namrow or
irregular, for example, in modeling a gap between rotor and
stator in an electrical machine, or in modeling a cartilage
between a joint and hip, the cost of calculation will be
vary high when the regular partition 1s used. Therefore,
the better choice to overcome the above difficulties is to
employ amsotropic meshes, which allow to get the same
convergence results as traditional finite elements with
fewer degrees of freedom.

Although anisotropic finite element methods have
such obvious advantages over conventional ones, it
seems that there are few studies focusmng on parabolic
equations. This study has used a kind of new amsotropic
finite element to semilinear parabolic equations and has
got the same error estimates as under the regular meshes.

There have been a lot of hiterature related to the
H'-Galerkin finite element methods. For example,
Park et al. (1995) studied two order elliptic problems,
Sobolev problems, hyperbolichy integro differential
equations, Schrédmmger problems and viscoelasticity type
equations respectively. Guo and Chen (2006) and Wang
(2006) focused on neural transmission equations and
Sobolev equations and got the optimal error estimates.

However, all of papers above are base on conforming
finite element method. Recently nonconforming fimte
element methods have been attracted more and more
attention (Shi and Zhou, 2010; Shi and Wang, 2009;
Shi and Guan, 2007a, b, Shi and Ren, 2009; Shi and
Liang, 2007, Shi, Xie, 2009; Shi ef al., 2008). For some
Crouzeix-Raviart type nonconforming elements with
degrees of freedom defined on the element or edges of the
element, since the unknowns have only to do with at most
two elements, they facilitate the exchange of information
across each subdomain and provide spectral radius
estimates for the iterative domain decomposition operator,
so the method can be parallelized in a lughly efficient
manner. Although nonconforming fimte elements have
such obvious advantages over conventional ones, it
seems that there are few studies focusing on parabolic
equations, especially by using H'-Galerkin mixed finite
element method.

In this study, we will present H'-Galerkin mixed finite
element method based on a new kind of nonconforming
finite element to the parabolic equations. By use of some
special properties of the interpolation operator and mean
value technique, instead of the generalized elliptic
projection which is an indispensable tool in the
convergence analysis of the previous literature related to
the parabolic equations, we derive the same optimal error
estimates as the conforming finite element studied by Pani
(1998). Moreover, without employing Ritz projection, the
error estimates of H1 norm and L2 norm, which are the
same as those of the conforming finite element methods
in previous studies, are obtained by the interpolation
functions.
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CONSTRUCTION OF THE ELEMENT

Now let us consider the following semilinear
parabolic equations:

p,—Ap=f(p)in £x(0,T)
p=0, on oQx(0,T) (L
PX.0)=py(X).in  Q

For the sake of convenience, Let QeR’ be a convex
polygon domain composed by a family of rectangular
meshes T,, which does not need to satisfy the regular
conditions. 3Q is the boundary of the domain Q and A 1s
the Laplace operator. f{p) satisfies the Lipschitz condition.
For all KeT,, denoted the center of element K by (x, y)
and the length of edges parallel to x-axis and y-axis by 2h,,
2h,, respectively.

Z, (xh, yiehy), 2, (ethy, yi-hy), Z, (xethy, yethy) and Z,
(x¢-h,, yxthy) are the four vertices and |, = Z.7,,, are the
four edges. Let K be the reference element, the four
vertices be 8, (-1,-1), 4, (1, -1), 4, (1, 1) and &, (-1, 1),. Let
f; = 84., (mod(4)), then there exists an reversible mapping:

N X=X, +hi,
F, K—->K :{ x ThS
Y=Y thn
The shape function spaces and interpolation

operators of the finite elements on K are defined by:

P = span{l, &, p(), p(n)}.
[ ev-Toteam=o,

Lo s
i‘—._[L(vflv)dsf0,14,2,3,4

Where:

9= [ 0S¥, =]
i &

[ ¢ vden,

N NPT 1
¥, =%(8,)i=12,34 (p(t)=5(3t2—1)

i+

The interpolation functions can be expressed as
follows:

M oa 1. N 1. .
11v=v5 +5(V2 _Va)Eﬁ'E(Va —m+

%m 9, - 2%, )¢©+%<% 3, - 20,)0(),

R
12v=1(vﬁ+v7 +¥, +i)+

1,. ~ . . 1. . . .
Z(Vg +V77V67V9)§+Z(Vx +V97V67V7)T]'

Then we define the mterpolation operators on the
general element K as:

I, : HY(Q) >V, T, | =TT,,
[v=T1v-F, YwveH(K),

T, (HY(Q)Y — W, TT;| =TT, TT.q
= (4= K, (%4, )- K,

Vq= (g, q,) € (H (K)’

And the associated finite element spaces V, and W,
as:

V,={v [¥; =V|, °F, € B VKe T, [,[v]ds=0FedK}

W, ={q=(q;.9;).9 ‘K =@ °F. 4, F)
4e f’zxf’g,q(a):o,for any node ac 0Q},

where [V] denote the jump value of v across the boundary
F and [v]when FedQ.

3 error estimates: Introducing the auxiliary variable
q = Vp and rewriting the Eq. 1 as:

q=Vp

P, =V q=1(p)in £2>(0.T) (2)
p=0, ondQx(0,T)

P(X. 0) = py (X)), in ©

We define:

H(div, Q) ={q& (L'(Q))", V-qe L'(Q)}
1
”q”H(dm,Q) = (KE; ”qH;,K * “V q“;K)2
By using of H'-Galerkin mixed finite element

methods,we consider the FEg 2, that is find
{p.q}:[0,T] — Hy (Q)x H(div, Q) , such that:

4242



J. Applied Sci., 13 (20): 4241-4244, 2013

(Vp, Vv)=(q, Vv), ¥ve H, (Q)

(9, w)+(V-q,V-w)=—(f(p),V-w), (3)
P, 0)=p,(X)
Ywe H{div, Q)
The discrete problem of (3) reads as:
{p,.q,}:[0,T] =V, x W, , such that:
(Vp,, Vv ) = (9, Vv, ), ¥V, eV,
(Yo Wy )+ (V-0 VoW ) = =(£(p, ). V-9, ), (4)
P(X.0)= Hllqpﬂ (20
Yw, € W,

Lemma 1: Problem (4) has a unique solution.

Proof: Let {¢, 9,9, ). {w,. v, -v,} be bases of V, and
W,, respectively. Then p, and g, may be expressed as:

N N
D= 2ap, g, = 2 by,
i=1 i=1

Substituting these expressions mnto (4) and choosing
v, =4, w, =y, with:

A=V VP . B=(W, Vo,
C=(y, ’wJ)NxN’ D=(V-y, >V'VJ Dra

Then (4) canbe stated as follows: Find (a b) such
that:

Adi=Bb
Cb, + Db =F(@)
d=(a,a,-a, ), b=(b.b, b, ),
N
F(@)=~(fa0,). V¥ )y
i=l
Since A, C, D are Positive defimte symmetric matrixes
and f are Lipschitz continuous, by the theory of
differential equations, the problem (4) has a unique
solution.

Lemma 2 (Shi et al., 2009): Suppose that peH’ (Q), then
on anisotropic meshes, for all w,e W, we have:

3L pomnie|= tlp, v,

Theorem 1: Suppose that p,p, e H*(Q),q.q, = (H*(Q))*, We
have:

|p—ph|h <ch

1
[+l + ¢ (puf +lafy +[pf +laf )]

”q N qhHH(d:v;Q) =ch
1
[1pl -, +lal, = ([ dpif; [ +Ipf +[af ay]
Proof: Let:

p-p. = p-TLp+{ITp-p,)=n+&
q-9, =q-Tq+(TTiq—q,)=p+6

We have known that:

la. - TTiq, [, <chla, | [V-(a-Tha), <echlal,

By the Eq. 3 and 4 we obtain the following error
estimate equations:

(VEVV. ) =(p+0,Vv,)— (YN, Vv, ), Vv, € V, (5)

©,w,)+(V-0,V-w,)=3 [ pw,nds—
K

() F(D, ). 7 -w,) (P W, ) (6)
~(V-p.V-w,) VW, e W,
choosing v, = £ in the Eq. 5, we have:
[vell <l + el + ¥, )
we have known that || ;< €], so we get:
el < il + el =¥l ®)

taking w, = 6 and noticing that:

1d
(6,.8)=_—

82
2 Jof

by Lipschitz continuous condition,we obtain:

1d
EEHGH; < ch’(p,

2 2
2 1

+laf; +[pf. +laf)+< e

Further, integrating the former equation with respect
to time from O to t and noticing 8(0) = 0, we have:

lefy <ch’ [} dp.f; +la +lof; +labydv+ <], Jol; ae
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Using Gronwall’s Lemma we finally get:

1
ol <, ol +laf +hl +lapar @
choosing w, = 6, in the Eq. 6 and noticing that:

1d
(V'B’V'et)ZEEHV'GHS

by Lipschitz continuous condition, Eq. 8, 9, lemma 2 and
Yongs inequality yields:

1d
er A A R A R A
integrating the former equation with respect to time from
0 to t and noticing V-8 = 0, by the Gronwall’s lemma we
can derive:

1
[v-of, <ch[ (ol faf +pf +aaer OO

By the Eq. 7, 9, 10, we complete the proof.
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