——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 13 (20): 4270-4277, 2013
ISSN 1812-5654 / DOL: 10.3923/1a8.2013.4270.4277
© 2013 Asian Network for Scientific Information

Defect Detection Technique Based on Similarity Comparison of Token

'Gue Tao, 'Dong Guowei, 'Qin Hu, *Long Baolian, 2Qu Tong and *Cui Baojiang
'China Information Technology Security Evaluation Center, Beijing, China
*School of Computer, Beijing University of Posts and Telecommunicaticns,

Beijing, 100876, China

Abstract: Similarity detection techmque of code has been widely used. At present, the techmique 15 mamly used
for the judgment of plagiarized code. In this study, on the basis of code similarity detection technique, we put
forward a static analysis method of defect detection of source code, it adopts lexical analysis and comparison
which based of token. Similarity comparison of defective samples can also been achieved in this way. After
testing result and comparing with other sumilar tools, the result demonstrate that the static analysis method
based on similarity comparison of token structures defective sample much more easily than others and it has
a good expansibility not only about programing language but also in the point of different defect type. The
same type defect can be detected thereby help programmer avoid having the same defective code.

Key words: Similarity detection, token-based comparison, defect detection

INTRODUCTION

Similarity detection of code 13 comparing two source
codes and find out the similar or same code Segment
(Han et al., 2010). Similarity detection technique of code
has been widely used for the detection of plagiarized
source code (Cui et al., 2011). Sunilarity detection of code
achieved by analyze the morphology, syntax and static
semantic.

The main method of defect detection of code 1s static
analysis techmque, static analysis can analyze the code
without modifying, it can completely cover the code,
independent of compiler, more convenient and faster than
dynamic detection (Gu et al., 2008). The static analysis
method of defect detection of code can mainly been
divided into three types, it includes type inferencing, data
flow analysis and constraint analysis etc (Zhou et al.,
2002). Concrete method just like static detection based on
the fault caused by reference null pointer, static detection
based on path sensitizing (Xiao et al, 2010), static
detection based on procedural and cross-process array
cross the border, static detection based on memory error,
static detection based on path sensitizing.

Software defect detect techniques based on static
analysis which we discussed above has their own strong
points, at the same tune, they all have a clearly
disadvantage, that is the defect analysis 13 restricted to
the particular language or particular defect type when the
analysis based on variable information, data link
mformation, path information and semantic information.
Because of those factors, all the methods have limitation

in range of application and expansibility. However, the
system we raised can convemently and effectively detect
different code languages and plagiarize types,
furthermore, the new plagiarize type can be easily added
into our system.

In order to detect defects more effectively, on the
basis of importing similarity detection of code, this study
put forward a static analysis method base on token
similarity comparison. The most obvious feature of the
method m this study 1s the good expansibility about
language type and defect type when we detect the
defects. Once we structure the corresponding defect
sample of code. It will easily detect various languages. For
certifying the method, we have an exploratory research in
this study, structure defect sample of C, C++ and Java. In
the following research, we will broaden it into the other
langue and lager number of defect type.

SIMILARITY DETECTION TECHNIQUE OF
CODE BASED ON TOKEN

This system proposes a token-based comparison to
detect defects of software via compiling lexical grammar
rules which could extend to multilingual comparison
handily.

The method of similarity detection, a token-based
software comparison technique, 1s breaking source codes
which include various function names, variables,
parameter, types of identifiers, operators, numbers and
keywords, mto token wvia lexical analyzer and then
transforming comparison of source codes imnto comparison

Corresponding Author: Guo Tao, China Information Technology Security Evaluation Center, Beijing, China
4270

J. Applied Sci., 13 (20): 4270-4277, 2013

Table 1: Lex translate characters into token

Table 2: Tnstance of source code

Source code

character Translate into token Example

Identifier— Translate into_ID+ ipszname->_ID+
Operator— Translate into_ID+ +-=_PLUS+

Number+~ Translate into NUM+ 78-> NUM+

Key words+~ Translate into relevant letter—~ Unsigned->UNSIGNED+

of token sequences. Specific implementation process
mcludes the following mam steps.

Pre-processing source codes: This step does relative
processes of notes, redefmitions of type, header files
containing statements macros, inline functions and so o,
in source codes. Since some characters do not affect the
semantics, they are recorded empty m pre-processing,
such as macro definitions, notes, TABs, enters, spaces,
etc. Conditions of redefined types processes according to
therr semantic, for mstance, processing of type
redefimtion statement “typedef int INTEGER™ 15 replacing
INTEGER with int in the file to improve the accuracy of
sinilarity detection.

Lexical analysis of the source code: This process
15 achieved by usmng lexical amalysis tool Lex
(Lexical compiler) which generates lexical analy zer reading
the source codes by characters and then returmung Token.
The main process of characters shows in Table 1.

This study processes program mainly depending on
morphology compiled by lexical analysis tools, Lex, then
generates. cpp files and separates the mput source files
mto single strings through executing lexical analysis
program. Then source codes are transformed mto token
sequences to get ready for following token-based
COIMpPAarison.

Table 2 and 3 are instances illustrate the translate
process.

Receiving token sequence returned from source
codes: First, source codes are tumed m to token
sequences. Then, middle files of comparison are output
and line lists of base files and target files are established
which records message digest values of middle files based
on line to do comparison, whose results are deposited
mnto same line lists to caleulate similarities.

Achieving line lists which records information of files:
Defimte line list node as following:

typedefstruct_line /frecord the structure of the line ~

{.—4
DWORD dwLine; /fstart byte of the line +
DWORD dwStart; /fend byte of the line +

DWORD dwHash;
Struct_LINE*next;
Struct_LINE*pre;
JLINE, *LPLINE;~

/fabstract of the line <
/Mmext node +
/fprior node +~

int func(in x)+~
{,_.

int m;+

return m;

},_.

Table 3: Instance of translate into token
int func(int X}~

{4—!

int m;+~

m = f1{x)+~

return m+

1=

This records the position of beginning letter in each
line (starting from line 1), the number and the abstract of
this line in files.

Doing a quick and unique abstract for each line in
codes is a necessary function for a program whether it
could process efficient and algorithm of line abstract is
adopted in this study. We use line abstract to analyze
intermediate file. Tgnored blank space and TAB, using
token multiply by corresponding default value of it.

Algorithm of line abstract is as following:

Hash(Line) = 3" i* Asc(token[i]))]

Asc (token [1]) 1s the custom value ith token of this line, 1
15 the sequence number of this line. For instance: The
token of “int a” 18 INT ID SEMI and the abstract of
this line 18 105 (INT)* 1 +110(_ID)* 2+ 116 (_SEMI) *
3=673.

This equation could calculate abstract of current line
with lmgh speed and no repeat. Due to the comparing item
15 codmng, spaces, TABs which has no effect on program
function, this method of abstract 1s correct and rigorous.

Comparing base files and target files: Same line lists are
established and the rows with same message digest
values are stored in the same row list via comparing the
message digest values of linked lists in base files and
target files. The algorithm 1s as follows.

All nodes reading from target files are stored mn Link
T and all nodes reading from sample files are stored in
Link S. First, the i" code from array T and the j™ code from
array S are marked as T[1], S[j],1 =] = land then their Hash
value are compared.

If Hash:

{T[i]}>Hash{S[j]}

then 118 increased by 1
If Hash:

{T[1]}<Hash{3[j]}

4271

J. Applied Sci., 13 (20): 4270-4277, 2013

then j is increased by 1

{T[i]} = Hash{S[j]}

then similar codes exist in this two nodes. The information
of this two nodes are stored in list Y to be processed next
step.

The algorithm circles until i = m and j = n which
means the terminal of comparison.

Calculating similarities: Calculating similarities is based
on stored information of same line lists among which the
unit of similarity is line and the value is the ratio of
numbers of similar lines and total lines. Following formula
calculates is used to calculate similarity SD of target
source codes to sample source codes:

oD - Ef(StNx) (2)

LC

StNx 1s the same nodes compared in line list Y in 5. LC 1s
total active limes in target source code (excluding
comments and blank outside the coding block).
Function calculate the numbers of same lines defined
as following.

Lines number of two files is not the total sum of same
lines achieved by line comparison because sunple adding
the numberof lines may generate a larger number than

=
(Transform into token)
¥

actual due to different lines of similarity may overlap. To
solve this problem, the system compiles a function f to
calculate the number of similar rows. The algorithm is to
establish an array of INT type which is same size as the
source file as. And then the same line list are checked, the
elementin array will be tumned to 1 while the
corresponding lines are included in list and then the
number of similar lines are the numbers of 1.

Storing comparing results into database: The comparing
results will be stored into SQLite database for
administrative purposes. Storing comparing results into
database means that results can be see all the time and
similar results for each part of the next step can be
performed in-depth research. Comparing flowchart is
shown in Fig. 1.

The core base part of similar authentication module
of software based on token similarity detection
technology is line alignment algorithm. The main idea is
to compare token sequences based on line which
could compare the totally exact coding blocks and
copies of coding blocks with disrupted order. LCS
(Longest Common Subsequence) (Yu and Zhao, 2008) is
taken to find the same lines in this study.

Procedure to solve the problem of LCS is to use a
matrix to record matching solution of the two characters
in two different strings. If they are matched, record is 1.
Otherwise, record is 0. Then, the longest diagonal 1

| Establish the linked list of codes’ name |

-

Linked list of target
file's name is not

Read a target file

Linked list of primary
document’s name is not

Calculate overall similarity |—

| Read-in a primary docoment

| Establish linked st of same code line |

IEstab]ish linked list of same code blockl

v

]

Calculate similarity

Fig. 1: Flow chart of comparison based on token

4272

J. Applied Sci., 13 (20): 4270-4277, 2013

6])

¢ IloveChina @ IloveChina
1 0100000000 1 010000CGCG00
o 0010000000 o 0020000000
v 0001000Q0¢CG0 v 0003000000

e 0000100000 0000400000

o

e 0010000000 e 0010000000
f 0000000000 f 0000000000
C 0000010000 C 0000010000
h 0000001000 h 0000002000
i 0000000100 i 0000000300
n 0000000010 n 0000000CG40
a 0000000001 a G0000000C0S

Fig. 2(a-b). Description of algorithm (a) Before the
improvement and (b) After the improvement

sequence is found, as shown in Fig. 2a which shows the
corresponding position of the longest matching
substring.

The disadvantage of this algorithm is to store the
adjacency matrix which will take up a lot of memory when
the two string length is large. Therefore, L.CS algorithm is
improved in this study. While characters are matched, we
are not simply assigned to the corresponding element by
one but endowed with its upper left corner of the
element’s value plus one. We use two markers marking the
positions of the max variable values in the matrix elements
to determine whether the current value of the element
generated is the greatest in generation process of the
matrix, according to which we changes the value of
marked variables. Then the position and length of the
longest substring matching has come out when the matrix
1s completed, as shown in Fig. Zb.

A sample of testing

Model construction of defected coding: This study
constructs more than 1500 testing samples of common
types of defect for three languages: C, C++and TAVA.

Including
Type mismatch: Signed to Unsigned, whose declaration
is returning an unsigned value. However, a signed value
1s returned.

Poor style: Value Never Read. Variable assignments are
not used, thus they become dead stores. Redundant Null
Check. The program may indirect reference a null pointer,
thereby it causes segmentation fault. Uninitialized
Variable. Program may use a variable before initialization.

Often misused: Exception Handling Enter Critical
Section() which would throw an exception and result in
the collapse.

Often misused: Strings. Conversion functions between
multi-byte and Unicode character could easily cause
buffer overflow. Dead Code. Instruction will never be
executed. Heap Inspection. Never use realloc () to adjust
the size of the buffer store with sensitive information,
because the function might leave sensitive information
in memory which cannot be covered mn the memory;
Missing Check against Null. Program will indirectly
reference a null pointer, because it does not check the
retumn values of functions which possible returning Null,
Out-of-Bounds Read. The program reads data from
outside bounds of the allocated memory, Poor Style:
Redundant Initialization. Variable assignment does not
use and becomes a dead storage. All the testing samples
are divided mto 68 kinds of categories and subdivided
1nto 90 specific species.

Construction of testing samples: In the construction of
testing samples, we first find out a piece of code
including the type of the defect and then estimate
whether it is context related. If it i1s context related, the
similarity test has
improvements in future. If it 1s not context related, Token
processing 1s used on a removal complete block to make
the fragment have a better universal. The data obtained at
this time is the construction of this sample.

some limitations which needs

Take uninitialized variable as an instance: Stack
variables of C and C ++ language is uninitialized by
default. Their initial value depends on what happened in
their stack when functions are called. Ummnitialized
variable should never be wused m program.
Programmers will usually use uninitialized variables in
code to handle errors or some special and unusual
circumstances. Warnings of uninitialized variables are
sometimes able to identify typographical errors existing in
the code.

Hence, a complete block of uninitialized variable is as
following:

gwith (ctl) {+~ aN =1i;+ break «

case —1 N=i+ detault:—

aN=0; bN=0+ break;+ aN=-1+

break; case 1.+~ aN =-1;+

case 0+~ aN =I+NEXT SZ;+~ break;+
bN =I-NEXT S7Z;+ 1=

In the sample above, switch statement attempts to
assign values of variables aN and bN, however,
programmers will accidentally assign the value of alN twice
and 1gnore bN in default cases.

Most problems of uninitialized variable are caused by
reliability of software. If attackers can intentionally trigger
the use of an unimtialized variable, then they can trigger

4273

J. Applied Sci., 13 (20): 4270-4277, 2013

crashes to launch a denial of service attack. Attackers can
affect the value of the stack before calling a function to
control an uninitialized variable value under appropriate
circumstances.

Token fragments of the above procedures give the
test samples as follows:

1: 59 Reserved Token— 0.286806— 9: 79 ID, name = bN+
gwit—

1:101(~ 6: 133 /n~ 9: 98 Operator+

1: 79 ID, name = ctl+~ 6:791D, name = [+~ 9: 86 Operator+
1:102) 6:79 1D, name =T+ 9: 86 Operator+

1:105 {~ 0.31875+ 0.44375+

2: 133 \n+ 6:791D, name =bN+«~ 10:133 \n+

2: 9 Reserved Token:+~ 6:98 Operator— 10: 6 Reserved Token:+
break+

case—

2: 86 Operator+ 6: 791D, name =i+~ 11:133'n+

2: 80 NUM, val = 1+ 0.31875+ 11:15 Reserved Token;+
defa—

0.175694+ 7:133 \n+~ 0.550694+

3:133 \n+~ 7: 6 Reserved Token+~ 12:133'n

3: 79 ID, name = aN+ brea— 12: 79 ID, name = alN+
3: 98 Operator+ 0.36041 7 12: 98 Operator+

3: 80 NUM, val = 0+~ 8: 133 '\n~ 12: 86 Operator+

0.19375+ 8: 9 Reserved Token+— 12: SO NUM, val = 1+

3: 791D, name=bN+~ case— 0.56875+

3: 98 Operator+ 8:80 NUM, val =1+~ 12: 79 ID, name = aN+
3: 80 NUM, val = 0+~ 0.411806+ 12:98 Operator+
0.19375« 9:133 'n— 12: 86 Operator+
4:133 'n 9:791D, name = aN+~ 12: SO0 NUM, val = 1+
4: 6 Reserved Token— 9:98 Operator+ 0.56875+

brea— 9:791D, name = i~ 13:133 '\n—

0.235417+ 9:85 Operator+ 13: 6 Reserved Token:+~
brea—

5:133 \n+— 9:79 1D, name = NEXT+ 0
EOF

5: 9Reserved Token+~ 0.44375+

case—

5: 80 NUM, val = 0~ 14: 106 }+

5: 80 NUM, val = 0~ 0.717361+

14: 133 \n

Now, a competed testing sample 1s constructed
which can be used for defected codes testing of
Uninitialized Variable type.

RESULTS

Similarity analysis using the defect results from defected
sample database test: The key of token-based similarity
analysis system used in defect detection is to construct
testing samples. Constructed results above can detect risk
of defects within codes to the point. The following
constructed 1005 test samples, for C and C++ language,
covering 38 kinds of defect types. Tools of code defect
detection, Code Compare which 1s a token-based sumilarity
analysis technique, is developed to analyze defects of
source codes, based on constructed defected samples,
of eMule, vle, iometer and other software. The
number of detected defects of software
Table 4.

1s shown

40 1 Poor style: Value never read
—— Redundant Null check
—A— Type mismatch: Signed to unsigned
35 4 Uninitialized variable
—@— Others
« 30
Q
2]
S
« 25 4
(=}
5
g
i 20
'd
e
2 15 4
E]
=
10 A
5 -
0 T T T 1
77423 77425 77421 77422

Software version

Fig. 3 Solution of defect detect 7zp

250

200 A

—>¢— Dangerous function: Strepy()
Memory leak

150 A

100

Total No. of all kinds of defects

50 A

npp.4.8 npp.5.8.6 npp.5.8.7 npp.5.9

Software version

Fig. 4: Solution of defect detect of npp

As can be seen from above testing results, the
number of defect which 15 tested out of five software
above, is 5959. Following is the defect analysis for the
same software of different versions. This study uses 7zip
and npp. The results by Code Compare analysis tools for
defect detection of 7zip of different versions are shown in
Fig. 3.

The results of software flaw test for notepad ++ of
different versions by Code Compare tools are shown in
Fig. 4.

4274

J. Applied Sci., 13 (20): 4270-4277, 2013

Table 4: Amount of defects detected in various softwares

D Catogory eMule 0.50a vic0.8.6e iometer20060727 optipng-0.5 optipng-0.6
1 Buffer overflow: Format string 3 5 0 0 0
2 Buffer overflow: Off-by-One 0 4 0 0 0
3 Buffer overflow: Signed comparison 0 1 0 0 0
4 Code correctness: Memory free on stack variable 1 0 0 0 0
5 Command injection 25 0 1 0 0
6 Dangerous function: Strepy() 60 2 63 9 20
7 Dead code 80 4 10 10 10
8 Double free 0 9 0 7 0
9 Format string 971 0 68 0 2
10 Format string: Argument type Mistatch 6 0 2 0 0
11 Heap inspection 3 139 4 1 1
12 Insecure compiler optimization 0 0 0 1 1
13 Insecure randomness 41 3 0 0 0
14 Memory leak 400 28 45 40 51
15 Memory Leak: Reallocation 0 124 0 0 0
16 Missing Check against Null 21 171 1 1 1
17 Null Dereference 6 6 0 1 1
18 Obsolete 24 5 3 0 0
19 Obsolete: Inadequate pointer validation 4 0 0 0 0
20 Often misused: Authentication 11 0 4 0 0
21 Often misused: Exception Handling 4 2 0 0 0
22 Often misused: File system 15 0 0 0 0
23 Often misued: Strings 1 0 0 0 0
24 Out-of-bounds read 0 1 1 0 0
25 Out-of-bounds read: Off-by-one 2 0 0 0 0
26 Password management: Password in comment 14 2 0 0 0
27 Poor style: Redundant initialization 41 37 1 0 0
28 Poor style: Value never read 104 25 5 6 24
29 Poor style: Variable never used 145 0 0 0 0
30 Process control 21 5 1 0 0
31 Race condition: File systern access 1 0 0 0 11
32 Redundant Null check 19 2 1 26 16
33 String termination error 0 0 0 9 11
34 Type mismatch: Signed to unsigned 44 0 1 7 5
35 Unchecked return value 621 25 24 1 3
36 Uninitialized variable 11 0 22 0 4
37 Unreleased resource 2 2 0 0 0
38 Use after free 0 4 0 10 0
39 Total 2701 606 257 129 161

As can be seen via analysing the experimental results 1400 1 —¢— CodeCompare
of the comparison above: The same test sample can be 1200 { —— FindBugs

. . . @ —&— Laps+

used to detect different software or different versions of 21000
similar defects in code; the same buggy code likely 2 200 -
continue to occur in different versions of the same pe
software; different software types of defects that appear % 600
are quite different; appearance of the same risks can be g 4007
avoided in the next version via code analysis on different 200 7
versions of the same defected software. 0]

Comparison results with other static analysis codes
of defect detection software. o

Take Java source code for instance. Comparisons are &

made among Code Compare which based on token
similarity comparison technique and other defect
detection tools like FmdBugs and Lapset+. This
experiments use544 test samples for aTunes,
freecol, freemind, jstock, MegaMek, robocode and
other software source, whose codes are analyzed.
Results of similarity analysis system are shown in
Table 5.

The experimental results of code defect analysis by
Java code defect analysis tool FindBugs (version 2.0) are
shown in Table 6.

Software version

Fig. 5: Total No. of defects line chart

The defect detection results of analysis code by Java
static analysis tools Lapse + (version 2.8.1) are shown i
Table 7.

Figure 5 shows the total defected numbers of testing
by three kinds of detection tools for six software. This
shows that defected numbers by matching techmque tool

4275

J. Applied Sci., 13 (20): 4270-4277, 2013

Table 5: Amount of the defects of six software detected by code compare

freemind- Megahlek-

ID Catogory alTunes 1.8.2 freecol-0.7.3 src-0 0 3 jstock-1.0.4d v(.30.1 Robocode-1.4.9
1 Code Correcness 160 6 1 18 82 31
2 Command injection 0 1 0 0 0 10
3 Dead code 6 11 1 13 36 6
4 Denial of service 39 11 0 0 81 34
5 Insecure randomness 6 49 0 1 3 18
6 J2EE bad practices 133 108 2 41 53 81
7 Missing check against Null 4 3 0 1 3 15
8 Missing check for Null parameter 0 0 0 0 3 0
9 Missing security manager check 0 0 0 0 0 21
10 Missing XML validation 1 11 0 1 0 0
11 Null dereference 0 8 0 1 91 1
12 Object model violation 0 3 0 1 15 1
13 Often misused 0 4 0 0 8 0
14 Password management. 11 0 0 16 5 0
15 Poor error handling 110 119 8 41 122 138
16 Poor logging practice 25 162 10 20 560 112
17 Poor style 16 19 9 16 84 5
18 Race condition: Format flaw 1 0 0 9 7 2
19 Redundant Null check 0 3 0 3 24 0
20 System information leak 110 0 0 0 0 0
21 Unchecked retum value 3 6 0 0 49 26
22 Unreleased resource: Streams 13 20 4 2 35 17
23 Woeak cryptographic hash 1 0 0 0 0 0
24 Weak encryption 4 0 0 0 0 0
25 Woeak security mangager check: Overridable method 0 0 0 0 0 13
26 Total 643 572 35 184 1261 531
Table 6: Amount of the defects of six softwares detected by FindBugs

aTunes freeco freemind- jstock- MegaMek- Robocode-
1D Catogory 1.8.2 1-0.7.3 sre-0 0 3 1.04d w0.30.1 1.4.9
1 Call to equals () comparing different types 17 13 1 9 28 19
2 Check for oddness that won’t work for negative numbers 11 20 1 8 35 22
3 Class defines non-transient non-serializable instance field reader Typelnfo
4 Load of known null value, improper use of null 11 17 1 5 27 17
5 Method may fail to close database resource 9 8 0 5 15 11
6 Method might ignore exception 12 6 0 3 13 7
7 Nullcheck of value perviously dereferenced 11 5 0 5 11 3
8 Possible null pointer dereference 6 4 0 2 11 3
9 Comparison of packaging should use “eueqls”, to compare the vahie type,

you need to mandatory conversion before use 27 3 0 1 8 2
10 Do net use new string ()defines the empty string 34 27 1 11 27 28
11 Method naming convention, the firdt letter lowercase 16 58 2 10 49 27
12 Inner class does not reference an external class properties/methods,
it should as a static inner class

13 A primitive type value after box immediately unbox 21 31 1 9 28 21
14 Empty check needs to be done before refrence 48 4 0 2 11 2
15 Total 257 211 7 75 302 167
Table 7: Amount of the defects of six software detected by lapes+

aTunes freeco freemind- jstock- MegaMek- Robocode-
ID Catogory 1.8.2 1-0.7.3 sre-0 0 3 1.0.4d v0.30.1 1.4.9
1 TIgnores exceptional return value of javai.o.File.mkdirs() 67 49 4 13 61 43
2 Method may fail to close stream 82 7 0 4 13 10
3 Possible null pointer dereference in method on exception path 23 4 0 2 11 2
4 Invocation of to string on values 13 61 4 20 81 60
5 Method concatenates strings using+in a loop 82 1 0 5 23 14
6 Dead store to new status record 12 67 8 25 91 90
7 Write to static field from instance method 13 3 0 1 7 2
8 Comparison of string objects using==or ! = 15 124 10 31 121 112
9 Method call passes null for nonnull parameter 8 1 0 5 24 15
10 Total 315 337 26 106 432 348

CodeCompare based on token similarity analysis is higher types of defect which can be tested is higher than
than others, because Code Compare can construct more others which is shown in Fig. 6. Hence, the number of
safe missing defected samples easily and the number of types of defect for six software 1s the lughest.

4276

J. Applied Sci., 13 (20): 4270-4277, 2013

Types detected by tool
ry
1

10 4
5 -
ﬂ L] L] 1
CodeCompare Lapse+ FindBugs
Different detection tool

Fig. 6: Amount of defect detected by three tools

Figure 5 shows the general trend of testing by three
kinds of detection tools for six software 1s the same which
indicates the similarity of CodeCompare with Findbugs,
lapse + and other tools, all of which have the function to
detect defected codes.

As can be seen by comparing, matching technique tool
CodeCompare based on token similarity analysis,
compared with other tools like Lapse+, FindBugs and so
on, could easily detect more types of defects wvia
constructing testing samples. Hence, CodeCompare
supports more types of defects and constructs testing
samples more handly. Above three tools have different
emphases and more defect types can be detect by
CodeCompare.

CONCLUSION

According to the analysis above. Similarity detection
technique based on token can be applied to static defect
detection of source code. Compared with other detection
method, it is more convenient structure and expansion
samples used for defect detection, specifically, compare
with Lapset and FindBugs, it supports more types of
code. For the different versions of a soft ware, it can
effectively find the same type defect and avoid it

occurring in the subsequent software. Admittedly, this
technique has misinformation sometimes, this need to be
solved in the following study.

ACKNOWLEDGMENTS

This study was supported by National Natural Science
Foundation of China (No. 61170268, 61100047 and
61272493); International S and T Cooperation Special
Projects of China (No. 2013DFG72850); The National
Basic Research Program of China (973 Program)
(N0.2012CB724400).

REFERENCES

Cui, B, I. Guan, T. Guo, L. Han, J. Wang and Y. J1, 2011.
Code syntax-comparison algorithm based on type-
redefinition-preprocessing and rehash classification.
J. Multimedia, 6: 320-328.

Gu, K, C. Liu and M. Jin, 2008. Customizable defect rules
of research and implementation of the ¢ + + code
defect detection tool. Proceedings of the National
Conference on Adaptive Hardware and Systems, June
22-25, 2008, Netherlands.

Han, L., B. Cui, I.X. Wang and Y. Hao, 2010. Type
redefinition plagiarism detection of token-based
comparison. Proceedings of the 2nd International
Conference on Multimedia Information Networking
and Security, November 4-6, 2010, Nanjing, China,
pp: 351-355.

Xiao, Q., C. Yang and Y. Gong, 2010. Improve precision of
the static defect detection methods. Comput. Aided
Design Graph. 1., Vol. 22,

Yu, H and I Zhao, 2008 The longest common
subsequence algorithm application in program code
similarity metric. J. Irmer Mongolia Uriv ., 39: 255-229.

Zhou, D., N. Li and Y. Yang, 2002. Detecion and
deletion on vicious
Comput., 1: 11-14.

pocedures. Microelectron.

4277

	JAS.pdf
	Page 1

