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Research of an Othmer-stevens Chemotax Is Model with Reproduction Term

Kue-Yong Chen and Jian-Wei Shen
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Abstract: In this study, we study the asymptotical behavior of solutions for an Othmer-Stevens model with
reproduction term. Making use of a function transformation and comparative method, we prove that the
existence of global, blow-up or quenching solutions of the problem on different conditions and more interesting
results are obtained. Under proper conditions, the species blow up while attractant quenches in finite time. The
results of the paper not only verifies real biological phenomenon but alse provides a theoretical groundwork

for numerical problems of the chemotaxis model.
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INTRODUCTION

The ability to migrate in response to external signals
is shared by many cell populations. The directed
movement of cells and organisms in response to chemical
gradients 1s called chemotaxis. The first chemotaxis
equation was introduced by Keller and Segel (1970) to
describe the aggregation of slime mold amoebae due to an
attractive chemical substance. Othmer and Stevens
consider another kind of chemotaxis phenomenons. In
this case the diffusion of the attractant,such as slime, 1s
ignorable and the diffusion coefficient is zero. Othmer and
Stevens (1997) developed this kind model by random
walking method and called it Othmer-Stevens model.
Sleeman and Levine (1997) developed a particular system
modeling angiogenesis. They found a explicit solution
which could be global or blow up m finite time but they
only considered this model in one dimension. Yang et al.,
(2001), Yang Yin considered Othmer-Stevens system in
high-dimensional and concluded that the solution was
either global or blow up in finite t.

In all works mentioned above, only this kind of
chemotaxis model without any reproduction 1s
discussed. Chen and TLiu (2011), we considered a
simplified Othmer-Stevens model with reaction term. In
this study, we comsider the following chemotaxis
model:

@zDV-{uV[ln v DJru[a-h v J, xeQ, t=0
gt o+ Pw atfw
a—w—p.u—éw xeQ t=0
gt
uV(ln—=—3-n=0, x€8l, t>0

+pw
u(x,0)=un[x), W[x,0)=wn(x), xell

(1

where, u represents the density or population of a
biological species which could be a cell, a germ, or an
insect while w represents an attractive resource of the
species. a, b, p and & are parameters, «, P are positive
constants. D is the diffusion coefficients of the cel u, 80
is the rate of chemoattractant degradation.

For the readers’ convenience, the following definition
is first presented.

Definition 1: Suppose that (u(x, t), w(x, t)) is a positive
solution to Hq. 1 defined in the interval [0, T), if T-ee,
(ux, t), wix, t)) is said to be a global solution; otherwise,
a non-global solution.

Definition 2: A non-global solution (u(x, t), w(x, t)) is said
to be blow-up or quenching, respectively, in finite time (or

eventually) if there is a finite T>0(or T = +e<) such that:

limsupu (x,t)=+e0 or limsupu(x,tj=0

1—T rel) 1—=T xel
FUNCTION TRANSFORMATION
Let the function transformation:

u

p:a+ﬁw

then the system (1) was transformed mto the following
equations:

@:AerVp Vin(o+ pw) +(5 et +a)p - (LB BIpt, (x,b)€Q;
at c+ Pw
w (o) :ICIHp(X,T)EI:(mthIH)&d‘E+ WDEJ:‘WP‘“‘*“’" e Q
o
%: 0, (x,t) €T
plx.0) = pyl)w(z.0) = wy (=), xeTh
(2)
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For any given bounded positive smooth function
w(x, t) on Qr the problem:

P _ Ap+ Vp- Vines pw)+ G—" ta)p— @p+bp’, (k0 Q,

ot i+ pw

%ZO, x,0el;

P, 0 =py(x) >0, xeQ
(3)

is an initial-boundary value problem of a semi-linear
reaction-diffusion equation, to which the comparative
method works.

By the well-known theory of parabolic equation,
there 13 a unique local solution p(x, t) to (2.2), whose
regularity depends on that of mitial data, eg.,
pxt)e ¢ (Qx(0,T)) if py(x)e C*(2). For convenience, a
solution in this study always means a function in
c*7(Qx(0,T)) satisfying the equation and related
mitial-boundary condition. And then obviously we have
the following lemma.

Lemma 1: p(x,t)eC**={Qx(0,T)) is a bounded solution to
(2.2) if and only if (u(x, t). w(x, t)) is a bounded solution
to(1.1), where, p(xt)=u{xt){c+pwixt)) and w(p)
satisfying the second equation of system (2.1).

Let:

Py =supp, (x),p, =inf p, (x)

nel2

Wi =Sup W, (x),w, =inf w, (%)

It 1s easy to show that there are a super-solution
p(x.t) and a sub-solution p(x.t) to (2.2) which read as
follows:

Hﬁ(i#b)t’ asa+3=0up+b=0
[1}
p(x.t)=1p,el, aspp+b=0

P, (a+8) gl

= , asa+a=0,uf+b=0
{a+8)+p, (pp+ b)(e(“a)L —1) np

asa=0,pp+b=0

aspB+b=0

asa = 0,pp+b=0

By comparison principle, we see p<p=<p. From the
second Eq. 2, it can be seen that if >0,

W(E) <w(p) gw(ﬁ); if p=0, W(E) =w(p) zw(ﬁ).
BEHAVIOR OF SOLUTIONS AS

a+8=0, up+b=0

In this section, as 8+8=0, up+b=0, 3 sub-solution
and super-solution to Eq. 3 read as follows:

. Eu
piXt)=——7r"—
(x.) 1+, (LB+b)t
p(xgt ) Euaeat

p(x.t) a+90(u[3+b)(e“’—1)

It can be seen easily that, if a+3=0,pp+b>0. e
have:

lim Pl = lim pex,t)= 0

which implies that:
Iimp(x,t)=0
If pp+b<0:
By > }Lﬁa+ b
there are:
-
"By (uped)
1
T, = —nf1- m]
such that:

}ggp(x,t) = }ggg(x,t)wo

which implies that there is T<[T,,T,] such that

lim p(x, £) =+
=

Let:

T up+b
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from the second equation of system (2):

W(ﬁ) [1+PD (up+b) J {Iaﬂpu[1+Pu(Hﬁ+b)I]“ - }

(“4)

):e'a‘|:l+%(]¢[3+b)(e“ -1 T {J'wp el (].LB-%—]J)(& e e w }
()

W(p

Theorem 1: Suppose that 8+8=0, up+b>0, then there is
a unique global solution (u(x, t), w(x, t)) to the Eq. 1,
where:

¢ if u=0, then both u(x, t) and w(x, t) quench eventually
*  1f p=0 thenu(x, t) keeps to be untormly bounded and
**quenches in finite time.

Proof: Since 2=-8<0,pf+b >0, then:

Jim pix.t)=0
As p>0, A>0 from Hq. 4, 5 and:

jo:pp,{l-%—[;)D (np+b IJ“ e dr
limn 2 — T =0
e [1+p0( B+b) ] e

it can be seen that:
fmm w0 =0, fim w(p) =0
which implies by comparison that:

limw(x,t)=0

t—+eo

Since u = p(e+w) then:
limu{x,t)=0
t—too

As p<0, A<0:

hlg_[otupu[hrpu ufi+b) :| et tdr =

which implies that there exists T such that:

}gplW(p) =0

At the same time, if A+1<0, then:

1<[1+f° (up+b)(e** )]“<[1+,D (up+D) ™

If A+1=0, then:

1>[1+f° (up+b)(e** )]“>[1+f° (up+ )T

If A+1 =0, then:
fe P @ P
auEDI[H f(ulﬂb)(e —1)] dr=opp, t
o

From above analysis, for any AcR:

lim w(p) = —oo

t—+

which implies that there is T, such that:

limw(p) =0

where T,<T,. Thus, there is Te[T,, T,] such that:

limw(p) =0

and then:

]ggu(x,t):]ggp((x+ w(p))=0

Asu=0, w(x,t)=w,(x)e™", then

ylnw(x,t):o, ylnu(x,t):o

Remark 1: In this chemotaxis model 1, 8>0 means that
the attractant can self-reproduce, e.g., slime produced by
the species, or mineral in favor with the species. And
then, the coefficient n takes positive when attractant w,
e.g., slime, is produced by the species u, or negative
when, e.g., mineral, is consumed by u. Thus, as >0, the
more 18 u, the more 1s w; while p<0, the more u, the less w.
If p = 0, it means w 18 a kind of mineral which beneficial
and non-profit to the species. Species u is effected by
attractant w but u does not effect and consume w. That is
consistent with our result.

By the similar analysis in the proof of Theoreml, the
following theorem can be concluded.
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Theorem 2: Suppose that a+8=0.uf+b<0 and:

B, = 2
= up+b

then there 13 a umque solution (u(x, t), w(x, t)) to the Eq. 1
such that:

¢« if u=0, bothu(x, t) and w(x, t) blow up in finite time T:

Tel Ll |
Po(1B+Db) p (up+b)

o TIf p<0, u(x, t) blow up in finite time T and w(x, t)
quenches in fimte time T'<T

o Ifp=0, wix, t) = we™ and then u(x, t) blow up in
fimte time T

BEHAVIOR OF SOLUTIONS AS
up+b =0

Suppose that pp+b = 0, the sub-solution and

super-solution to system 3 as follows:
E(X’ t) _ ﬁne(aw)t
pixt=pe’

From the second equation of Eq. 2:

B oty gy

t M — { a4
- 25 - e
W(p) =gt {ozppD _[e(*"’”)‘f:a+5 ’ du+ WD}
a

[ L [ s
Hy remin e
wip)=e*" {mpguj‘e(a”)‘e e d‘t+WD}
1}

By the similar analysis in the last section, the
following theorems can be concluded.

Theorem 3: Suppose that pf+b = 0 and a>0, then there is
a global solution to the problem 1 such that:

*  If p=0, both u(x, t) and w(x, t) blow up eventually;

o If p=<0, u(x, t) will blow up eventually while u(x, t)
quenches in finite time

e If pn=0, w(x, t) quenches eventually and **blow up
eventually

Theorem 4: Suppose that a+8<0 and pp+b = 0, then there
is a global solution (u(x, t), w(x, t)) to the problem 1 such
that:

*  As u=0, both u(x, t) and w(x, t) quench eventually
o Aspu=0,if:

= -
appy el
+2

28+a<0, W, >
a

both u(x, t) and w(x, t) quench eventually;

o I
(e d
28+az0,w, > HE,
- a+d
or:
—_ (e d
28+a<0, Wy < MED,
a+d

u(x, t) quench eventually and wi(x, t) quenches in
finite time
s TIf A>1, both u(x, t) and w(x, t) blow up eventually

Theorem 5: Suppose that a+d = 0 and pp+b = 0, then
there is a global solution (u(x, t), w(x, t)) to the problem 1
such that:

s Asp>0, ppp, <8 bothu(x, t) and w(x, t) are bounded
uniformly

o As =0, ulx, t) keeps to be bounded uniformly, u(x, t)
quenches in finite time

*  As p =0, w(x, t) quenches eventually and u(x, t)
keeps to be bounded uniformly

BEHAVIOR OF SOLUTTONS AS
atd=0, uptb+0

As  atd+0, pptb#0 the sub-solution and
super-solution can be written as follows:

En (a+ a)e(sué)l _pnae“

plx.t)= z . plwt)= . 0
plxt) (a+6)+pn(pb+b)(e(‘*a)‘—1) E(Xt) a+ED[p.B+b)(e"—1) psat
o — ;n&& - En -
P(X’t)76+50(pﬁ+b)(em—l)’ p(xt) L+p, B+ asa=0
It can be seen easily that:

o Ifa=0, upt+b=0:

L= a+d

lim p{x,t) =

lim px.t) Wb

. a

lim p{x,t)=———

H«nE( ) Hﬁ+b

which mmplies that:
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. a+d
< lim p(x,t) < .
pp+b Pt up+b

o If -d=as<0, up+b=0:

a+d
B+b

lim ﬁ(x,t) =
t—+m
t]j.m plxt)=0

which implies that:

a+3d

up+b

0 < lim p(x,t) <
oo

o TIfatd<0, upt+b=0, then:
lim p(x.ty=0
t]i.t}lmg(pcz,t) =0
which implies that:
lim pex,) <0
o Ifaz0, up+b<0, there exist t;<t, such that:
m PeX, 1) =+
lim pex, ) = 4o
which implies that there 1s a Te[t,, t,] such that:
]tjiITlp(X, t)=+»

o TIf-8<a<0, pftb=0:

B, > 2
= pup+b

then there exist t,<t, such that:

lim E(X, t) =+
3ty
{5{21 E(X, t) =+

which implies that there is Te[t,, t,] such that:

]tj.n;lp(x, t)y =+

o Ifat+d<0, uptb=<0, as:

P a+3d
Py uf+b

lim p(x,t)=0
t—teo

lim p(x,t)=0
t—Ho =

which mmplies that:

L].i.n‘lp(x,t):o
as:

=
By pp+b

there exist t,<t, such that:
133;1 P, b =+
lijz E(X, t) =+
which implies that there is Te[t,, t,] such that:
lmp(x, t) = +eo
From the second equation of problem 2:

. _
w(p)=u(ty'e™ {U.Ppnj u(T) " e+ WU}, u(t) =1+ —pn(l-lﬁg B) (men_py
: a+

(e'-1)

(6)

w(p)=uity e ™ {cwpujy(f)’“’l e dr + wn}, uif) =1+ B(GB-D)
p P, "

Theorem 6: Suppose that a>0, pp+b=0, then there is a
unique global solution (u(x, t), u(x, t)) to (1) which satisfies
that:

«  As p=0, 1f Aa>9, then both and blow up eventually,
if A(a+d)<B, then both u(x, t)and w(x, t) are uniformly
bounded

¢+ As u<0, u(x, t) is uniformly bounded while u(x, t)
quenches in finite time

¢  As u=0,then u(x, t) is uniformly bounded and
w(x, t) quenches eventually
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Proof: Since a>0, pf+b=0, then:

a . a+d
< lim p{x,t) <
pp-+b mpted up+b

From Hqg. 6, if p=0, pa>o:

lim w(p) =-+oo

=

If p=0, Aat+d)<d:

L
I _ I e R L apce
t—)—mW(E) OLHEU t—ea 9( ) € -0[9(":) € * ('Llﬁ-f— b)(6— 7\3)

Similarly, when A(a+8)<d:

(a+dpo

W)= TG AT o]

From above analysis:
e As Aax0:
Jim w(p) =+
then:
gleH(X,t) =+
+  As A(at+0)<d, then u(x, r) 1s bounded and:
lim wi(p) = W(x)
Where:

apo W) < (a+3)uo

WBDGE-2a) BB
If p=0, then A<0, Ala+8)<b:
lim w(p)< 0
fim ) <0
Thus, there exist t,<t, such that:

{g{TW(p) =0

}gEW(E) =0

which implies that there 1s Te[t,, t,] such that:

limsw(p) =0
]inT*m(X,t) =ap(x,T)
1=

If u=0, wix, t) = wee ™, then u(x, t) is uniformly
bounded and**quenches eventually.

By the similar analysis of proving Theorem 1 and
Theorem 6, the following Theorems can be concluded.

Theorem 7: Suppose that 2<0.a+3>0up+b>0, then
there is a unique global solution (u(x, t), w(x, t)) to (1)
which satisfies that:

*  As p>0, Aa+d)<d, then both u(x, t) and w(x, t) are
uniformly bounded,

*  As p<0, u(x, t) 18 umformly bounded while u(x, t)
quenches in finite time

» As p =0, then u(x, t) 18 umformly bounded and
w(x, t) quenches eventually

Theorem 8: Suppose that a=0.0p+b>0. then there is a
unigque global solution (u(x, t), w(x, t)) to (1) which
satisfies that:

«  As >0, 0<A<l, then both u(x, t) and w(x, t)are
uniformly bounded

*  As p<0, u(x, t) 13 uniformly bounded while u(x, t)
quenches in finite time

+  Asp =0, thenuix, t) keeps to be bounded and w(x, t)
quenches eventually

Theorem 9: Suppose that a+8<0pf+b>0, then there is
a umque global solution (u(x, t), w(x, t)) to (1) which
satisfies that:

*  As u=0, both u(x, t) and w(x, t) quench eventually,

*  Asp<0and A+1<0

¢ If wo <min{d,.d,}, ux, t) quenches eventually, w(x, t)
quenches in finite time;

s If 28+a<0, w,2max{d,,d;} both u(x, t) and w(x, )
quench eventually

+  As p<0andA+1:=0

o Tf wo <min{d;,d,}, u(x, t) quenches eventually, w(x, t)
quenches in finite time

o If 25+a<0, w,=max{d,d,} both ux, t) and w(x, t)
quench eventually
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Here:

app apup +b +b=
= Yy Jd, = 1Py dE:p’B Eu’d‘l:uﬁ : (5)
a+d a+4d

a+258 a
4 = A=,y d, = d (1= d,)

Theorem10: Suppose that a+8> 0, pp+b <0,
Ifa=0 or a=0:

B, = 2
= up+b

then there 1s a unique non-global solution (u(x, t), w(x, t))
to (1) which satisfies that:

¢ As =0, then both u(x, t) and w(x, t) blow up in finite
time

¢ As u<0, w(x, t) quenches in finite time T whileu(x, t)
blows up in finite time T', where T'>T

Theorem 11: Suppose that 2+8<0,1B+b<0, then there is
a unique solution (u(x, t), ulx, t)) to (1) which satisfies that:

¢ Asu=0

¢ TIfd,<1, bothu(x, t) and w(x, t) quench eventually

« Ifd<l, bothu(x,t) and w(x, t) blow up in finite time

¢ As <0

e If28+a<0, d,<1, w, =max{d,,d;}, both u(x, t) and
w(x, t) quench eventually

o If d,<l,wo<min{d,,d,}, u(x, t) quenches eventually
and ** quenches in finite time

» Ifd»1, ulx, t) blow up in fimte time T and w(x, t)
quenches in finite time T'<T

*  Asp=0,d.>1, then u(x, t) blows up m finite time and
w(x, t) quench in finite time

SUMMARY

In this study, we discuss the chemotaxis model (1).
The existence of unique solution to this problem is given
by sup-sub-solution method. The solution exists globally
when the initial value:

u,(x) in{ a a+3d )
o+ Pw,(x) pp+b pp+b
While when the 1mtial value:

u, (x) a2 a+d )
o+ Pw,(x)

Wb pp+b

any non-global solution (u(x, t), wix, t)) satisfies that:

s If u=0, both u(x, t) and w(x, t) blow up in finite time
»  Ifp<0, wix, t) quenches m fimte time, after that,
u(x, t) blow up in finite time

The main results are shown by above theorems in
this study. In fact, we wonder and are studying, what will
happen when:

Po

=

a
L
' up+b
NOowW.
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