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Improved Sound Source Localization Using Classifier in Reverberant Noisy Environment
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Abstract: Sound source localization 1s very umportant in many microphone arrays application, ranging from
speech enhancement to human-computer mterface. The Steered Response Power (SRP) using the phase
transform (SRP-PHAT) method has been proved robust but its performance degrades in highly reverberant
noisy environment. The Naive-Bayes and Euclidean localization algorithms based on classification of cross-
correlation functions outperform the SRP-PHAT in highly reverberant noisy environment. This study proposes
the improved Naive-Bayes and Euclidean localization algorithms using principal eigenvector. Sumulation results
have demonstrated that the improved Naive-Bayes and Buclidean algorithms provide higher localization
accuracy than the Naive-Bayes and Euclidean algorithms in reverberant noisy environment.

Key words: Microphone array, Naive-Bayes classifier, Euclidean distance classifier, cross-correlation function,
principal eigenvector, sound source localization

INTRODUCTION

Sound source localization 1s useful for most
microphone array applications such as speech
enhancement, video-conferencing, hands-free speech
recognition and human-computer interface. Many
approaches for sound source localization using
microphone arrays have appeared in the literature
(Dmochowski and Benesty, 2010). For example, method
based on energy measurements, distributed microphone
network, blind multiple-input multiple-output filtering
and algorithms based on particle filtering are used to
locate and track acoustic source (Lombard ef al., 2006,
Valenzise et al., 2008). The time-difference-of-arrival
estimation methods (Knapp and Carter 1976, Chen et al,,
2006, Brutti et al., 2008) are the most popular methods in
practice. The method based on Steered Response Power
(SRP) is more robust than that based on time-difference-
of-arrival estimation. The steered response power
using the phase transform (SRP-PHAT), also known as
global coherence field (De Mori and Angelini, 1998;
DiBiase ef af., 2001), 1s one of the most popular modern
localization algorithms. Another three SRP-based acoustic
source localizers are more robust than SRP-PHAT
(Mungamuwu and Aarabi, 2004; Zhang et al, 2008;
Wan and Wu, 2010). However, the above mentioned
methods may fail to locate the sound source in adverse
noise and reverberation conditions.

Recently, to improve the localization performance in
adverse acoustic conditions, many classification-based

approaches (Strobel and Rabenstein 1999, Brutti et al.,
2007; Takiguchi et al., 2009; Wan and Wu, 2013) are
proposed. We proposed the Naive-Bayes and Euclidean
localization algorithms based on
cross-correlation functions in (Wan and Wi, 2013). This
type of approach invelves two phases: training and

classification of

localization.

In this study, the mmproved Naive-Bayes and
algorithms using principal
eigenvector are proposed. The principal eigenvector is

Euclidean localization
used to estimate the cross-correlation function which
forms the feature vector and then the source location 1s
estimated by the Naive-Bayes classifier or the Euclidean
distance classifier based on the feature vector.
This study is organized as follows. Tn section 2, we
the signal model. The Naive-Bayes and
localization algorithms are formulated in
section 3. The proposed localization algorithms using

describe
Euclidean

principal eigenvector are presented m section 4. The
results of localization experiments extubit the performance
of the proposed algorithms n section 5. Finally, Section
6 gives the conclusions of the study.

SIGNAL MODEL

The signal received at the nth microphone in an array
of two microphones can be modeled as:

x, (K =h (ks +w k), n=12 (1)
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where, h,(r,, k) represents the acoustic room impulse
response between the source and the nth microphone,
“*” denotes linear convolution, s(k) is the source signal
located at r, and w (k) 1s uncorrelated additive noise
component received at the nth microphone.

The received signal can also be expressed in the
frequency-domain. Transforming (1) to the frequency-
domain, gives:

X, ()= I (1, 9S(e)+ W, (), n=12 (2)

where, X (w), H(r,, 0), S(w) and W (w) are the Fourier
transform of x,(k), h,(r,, k), s(k) and w,(k), respectively.

Let the stacked vector of microphone signals be
denoted as:

H(w) = H(w)S(wH+W(w) (3)
Where:

X(6) = [X, (e, X, ()"
H(e) = [H, {x,, o), H, {r,, o] (4)
W(e) = [W, (), W, ()]

the superscript “T” denotes transpose.
SOURCE LOCALIZATION USING CLASSIFIER

Estimation of the cross-correlation function: In the
frequency-domain, the Generalized Cross-Correlation
(GCC) function between x,(k) and x,(k) can be calculated:

R, (D= ¥, , (@)X, (00X @)™ do )

where, P, (w) is the weighting function and the
superscript “*” denotes complex conjugation.

The Generalized Cross-Correlation (GCC) function
can be made more immune to reverberation using the
phase transform (PHAT). The PHAT weighting is:

L (6)

W - -
12 (o) ‘X1 (OJ)X; (0))‘

Inserting Eq. 6 into 5, we get:

R AC) (WS ;
Rl,z(r) ‘[’mme deo ()

Naive-bayes classifier for source localization: The
generalized cross-correlation function R, ,(T) forms the
feature vector:

¥ 2 [R1,2 (_Tmax)’Rl,E (T TDsees
Rl,z (me - 1)=R1,2 (_me)]T (8)
2 Yoo Vi Yo Yo'

Te = Tound (aDf/c) (D

where, round(-) is rounding function, the scale factor « is
set to 1.67 i the next experiments, f, 13 the sampling
frequency, D is the distance between the two
microphones and ¢ is the acoustical velocity.

The Gaussian probability density function of
individual feature y; is:

1 -ny
p(y’)z\fﬁc. exp[—(y] B }, j=L2...2t _+1 (10)
1

20‘]2

where, ., is the mean value and o7 is the variance of the
feature y..

For each position 1, the mean value p(r;) and the
variance 0%(1;) are estimated using M frames data in the
training phase:

M
mE =LYy i-12, K (a1
1 M
ol =17 2 O i), 112 K (12)
m=1

Assuming that the individual features y, j = 1, 2,..,
21,,+1 are statistically independent, the probability
density function of the feature vector y 1s:

_21mm+l _2me+1 1 _(yj*l-l-](r;))2 13
p,(y)= 1;[ P (y,)= 1;[ JEGJ(T;)EXP[ 2o} (1) }( )

The location that maximizes the probability density
function py(y) will be a good source’s location estimate:

i, = argmaxp, (y) (14)

Euclidean distance classifier for source localization:
For each position 1;, the mean vector iy 1s:

I T CONTHC) BTN G (15)

The Euclidean distance between the mean vector L1,
and the feature vector v is:

= Jy-n, 7 (y-p,) (16)
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The location that minimizes the Euclidean distance
d;(y) will be a good source’s location estimate:

f, = argmind, (y) (17
3

PROPOSED ALGORITHM

Estimation of the cross-correlation function using
principal eigenvector: The frequency-domain correlation
matrix R_(w) is given by the expectation:

R, () = E(X(a)X" () (18)

In practice, the frequency-domain correlation matrix
estimate at the mth update R (w, m) is recursively
obtained:

R, (am)=aR (@m-1)+ (- DX (@mX @m) 19

The recursion 1s imtialized as R (0w, m) = X(w, 1)
Xy(w, 1) and the smoothing factor ¢ is set to 0.4 in the
next experiments.

The eigen-decomposition of the correlation matrix
R (w, m) 1s given by:

R, (om)=3 % {am)q(am)q; (em) (20)

i=1
where, A(w, m) is eigenvalue and glw, m) 1s
corresponding eigenvector with A,(w, m)> A,(w, m). By the
principal component method, an approximate reverberant
signal Y(mm) is equal to the first principal component
(Wolfgang and Leopold, 2007), i.e.:

Fam) = i, (am)g,(am) 2D

where, g,(w, m) = [q,(w, m), g,(w, m)]" is the principal
eigenvector. The approximate reverberant signal ¥ (am)
of the nth microphone is:

¥ (am) = J7 (emg, (@m), 1=12 (22)

Similarly to Eq. 7, using approximate reverberant
signal ¥, (mm), the cross-correlation function can be
obtained:

gy (o My {eam) .
Rpgp(mmy=| ————T——¢"dw (23)
e =[, 9 (o m)g;fam)

Improved naive-bayes classifier for source localization:
The cross-correlation function Ry, (T, m) forms the
feature vector:

z% [RPEI,E (T )=RPE1,2 G §
RFEI 2 (Imax - 1) RFEI 2 (Tmax)]T (24)
*[21 22 Z thx 221mx+1]
The Gaussian probability density function of
individual feature z; is:

1 R
z)= exp| — , i=L2,..., 2 +1 (25)
p( J) 'JEG] P[ 20]2 ] Tonm

The individual features z, j = 1, 2,.., 27,41 are
assumed to be statistically independent. For each position
1}, the probability density function of the feature vector z
15!

o ~ gt B (Z] *J-l-j(r, ))2 26
pq(z) H pr.(z) H \!EO‘( ) [ 20',?(1-;) ]( :

The location that maximizes the probability density
function ps(z) will be a good source’s location estimate:

f, = argmaxp, (z) (27
5

Improved euclidean distance classifier for source
localization: The Euclidean distance between the mean
vector uy; and the feature vector z is:

d@=Jzp )z pn) (28)

The location that minimizes the Euclidean distance
ds(z) will be a good source’s location estimate:

t, = argmind, (z) (29)
A

SIMULATION RESULTS

Here, the performances of the proposed source
location algorithms are evaluated by simulation. The
dimensions of the simulated rectangular room in meters
are 7x6>3 m. There is 0.3 m between the two microphones
which are located, respectively at (3.85, 2.5, 1.2) and (4.15,
2.5, 1.2). There 13 2 m from the speaker to the midpoint
between the two microphones. The image method (Allen
and Berkley, 1979) is used to generate the room impulse
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Fig. 1(a-b). Comparison of the performance for the
naive-bayes, euclidean and the proposed
algorithms with 9-position (a) T 60 = 0.3 sec
and (b) T 60 = 0.6 sec

responses. By adjusting the frequency-independent

reflection coefficient, two levels of room reverberation

time (Ty,): 0.3 and 0.6 sec are achieved. A 16 kHz sampled

“clean” speech 1s convolved with the room impulse

responses to generate reverberant signals. The additive

white Gaussian noises of the two microphones are
uncorrelated with each other and the noises are
uncorrelated with the desired signal The zero mean
noises are then added to the reverberant signals and the
average sighal-to-noise ratios of the two microphones
vary from 5-25 dB. Each frame 15 windowed by a Hanning
window and the frame size 13 512 samples (32 msec). The
spealker’s position for training and testing consists of nine
positions (10, 30, 50,.., 150 and 170 degrees) and
seventeen positions (10, 20, 30,..., 160 and 170 degrees).
Figure 1 and 2 depict the localization accuracy as a
function of signal-to-noise ratio for the Naive-Bayes,

Euclidean and the proposed algorithms, where the number

of traming data 15 100 frames. As expected, each of the

algorithms performs well at high signal-to-noise ratio

1007 (2) W Improved euclidean

90 4 B Improved naive-bayes
O Euclidean -
O Naive-bayes
80 1 ]
70 =
60
50
40 H
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20
15

Localization accuracy (%)

100 -
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40

30 4 H
20

5 10 20 25

Signal-to-noise ratio (dB)
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Fig. 2(a-b): Comparison of the performance for the naive-
bayes, euclidean and the proposed
algorithms with 17-position (a) T 60 = 0.3 sec
and (b) T 60 = 0.6 sec

levels. As reverberation time increases, the performances
for all algorithms become bad. It can be observed that the
proposed algorithms outperform Naive-Bayes and
Euclidean algorithms for each signal-to-noise ratio
condition.

CONCLUSION

This
source

study has presented an improved sound
localization method based on principal
eigenvector. The principal eigenvector 13 used to
estimate the cross-correlation function and then the
cross-correlation function forms the feature vector. Based
on the feature vector, the source location is estimated by
the Naive-Bayes classifier or the Euclidean distance
classifier. Sunulation results have demonstrated that the
principal eigenvector based algorithm offers improved
sound source localization accuracy over the Naive-Bayes
and Buclidean algorithms in noisy
environment.

reverberant
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