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Abstract: In the automobile industry, the use of Polycarbonate (PC) window pane is well developed. However,
the sound insulation performance of automobile’s Polycarbonate composite pane 1s poor than traditional
glass pane because of its high rate of stiffness to low weight. There is need to design polycarbonate window
pane with superior acoustical insulating property for automobile consumer comfort. In this study, the
innovative super thin sandwich structure(less than 10 mm) was developed using viscoelastic core layers and
the outer layer of the panel was fabricated from Polycarbonate composite panel. This paper introduces the
vibro-acoustic models to predict the response of the pane and to evaluate the effect of damping treatment on
both structural vibration and noise transmission in the fluid domain. One of the particularities of the proposed
model lies 1 the only storage of the panel impedance matrix reducing the numerical efforts of previous studies.
The numerical results reveals that noise attenuation can be realized by appropriate selection of structural
parameters such as the damping of structural and cavity, the thickness of the pane and density of viscoelastic
core material.

Keywords: Noise reduction, polycarbonate window pane, fluid-structure mteraction, sandwich structure,

automobile

INTRODUCTION

Tt is a tendency that Polycarbonate (PC) materials
replace the glass as the automobile window pane due to
its high rigidity, lightweight, high freedom to processing.
Control of mterior noise levels m automobile 1s an
important  objective  for providing passenger
greater comfort. The transmission phenomenon 1s a
typical flnd-structure interaction problem. The coupled
structural vibration and acoustic field form a so-called
vibro-acoustic system.

In the past, a comprehensive modal-based theoretical
framework were presented by Lyon (1963) , Dowell and
Voss (1963), Pretlove (1965) Since then, Guy and
Bhattacharya (1973), Narayanan and Shanbhag (1982)
Pan et al. (1990) has been directed at improving analysis
model of sound transmission through panels into cavities.
They provide solutions for coupled responses in terms of
the modal characteristics of the uncoupled structural and
acoustic systems (Kim and Brennan, 1999). Considers the
same problem but uses the impedance mobility approach
with a simple conceptual structural-acoustic coupled

system. Dhandole and Modak (2010) used the Fimte
Element Method (FEM) predicting the interior noise in the
low frequency range. Deckers et al. (2011) analyzes of
same problem using a Wave Based Method (WBM) in the
mid-frequency range. Nowadays, the combined usage of
Boundary Element Methods (BEM) and FEM 1s becoming
more and more popular for vibro-acoustic analysis.
(Jeyara), 2010) adopts FEM for the structural dynamic
simulation and BEM for the acoustic field assessment.

Based on the facts that (Narayanan and
Shanbhag, 1982), the sandwich panel 15 more effective for
noise attenuation than the single plate and a damping
material can facilitate the design, a plausible method 1s to
design optimal struchure meeting both acoustical and
structural demands. This paper presented a simple
description on the vibro-acoustic modeling of the simply
supported sandwich PC pane with close enclosures. In
section 4, numerical analysis is performed to investigate
the effect of proposed method on noise attenuations.
Numerical results are elaborated to demonstrate the
validity of the design, leading to some useful conclusions
drawn in the final section.
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ACOUSTIC FORMULATION

The model under investigation is a rectangular cavity
filled with air consists of five rigid walls and a flexible
vibrating sandwich pane on the top surface, as shown in
Fig. 1. The sandwich pane 1s also simply-supported on all
edges and an external sound field P, excites the top pane,
which is a plane wave, in turn, radiates sound power into
the cavity.

The acoustic theory starts from the well-known
Helmholtz equation, which describes the acoustic
pressure inside the cavity:

v p o M
The boundary conditions to be satisfied are:

2
aPﬂ:—pa‘;vonAF,W=00nAR (2)
on &t

where p and k are the fluid density and the wavenumber
of sound, respectively and w is the displacement of the
flexible pane m the normal direction i, Ay and Ap, indicate
the flexible and ngid surfaces of the cavity and t
represents time.

The sound pressure P, (r, w) at location 1 in the cavity
can be described by the sound-pressure modal amplitude
matrix [P,]and the cavity-mode shape matrix [d,] as
follows:

P, (o) = [0, '[P, 3)
The modal amplitude matrix is represented by:
[Pol=[2. ][Va] 4

where, [7,] is the internal radiation impedance matrix of
the panel and can be represented by:

B, /s .. B/
[Zi]=pe] = © (5)
BN,I /gﬁ BN,M "QQ

where, B, | is the modal coupling coefficient between the
I th panel mode and T th cavity mode defined as:

By =o([, wiom o) ©

Pexi-External excitation
SS-simply sipported

(SS

hy ;{: " Flexible pane (SS)

-

Fig. 1: Schematic diagram of a rectangular cavity with a
vibrating sandwich pane

Tt should be mentioned that in the following
discussions, the mode shape functions ¥, (o) and ¢, (o)
for the uncoupled panel mode T and cavity mode T are

elements of [¥,,] and [dy], respectively.
In Eq. 5, 15 defined as:

Gl = JMf kAL = fMlkuk -k ™
where, the modal masses defined as:

M = pf, 0y (8)

ky=wu/c (9

For a ngid-walled rectangular enclosure, the acoustic
mode shape function 1s given by Bullmore ef al. (1987):

(1) = cos(Ilnx/ a)cos(mnx /b) cos(nmx / d) (10)

where, 1s the mteger mndices of the Jth cavity mode.
The corresponding acoustic natural frequency is
given by:

o, =c’[(n/a) + (mm/ by + (/) ] (1)
RESPONSE OF SANDWICH PANEL
The equations of motion of a umform three layer

sandwich plate with a damping layer were derived by
Mead (1972) under the following assumptions:
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¢+ There is no significant direct strain in the core
plate. Both
transverse

perpendicular to the plane of the
face-plates undergo
displacements

*  There is no sigmficant shear strain in either face-plate
1n planes perpendicular to the plane of the plate

»  Direct stresses i the soft core are much smaller than

1dentical

the direct stresses in the face-plates and so may be
ignored

Assuming a harmonic vibration, under forced damped
loading form p = inpa’w /8%t , After eliminating the in-plane
displacements U, V, mn terms of W, the equation of motion
for the transverse displacement can be reduced to the
form Narayanan and Shanbhag (1982):

VWog(+ VIV W'V w g " w=0 (12)

Where:

g’=gk1+jﬁﬂa2:2GOr—#X1+jﬁﬂEhﬁz
Vi=d'rax" +308 fax'y )+ 38 T’y + ey’
Vizarax'+ 28 e’y )+ 8 1oy
ol = @' (1+impu/D

where, E 18 young’s modulus of the face plate, v 1s
Poisson’s ratio of the face PC pane, G 1s storage shear
module of the damping core, P is loss factor of core,
g’ is shear parameter of the core, p is mass per unit area of
the entire sandwich, h, is thicknesses of constrained
damping layer, Y = 3 (1+h,/h, ¥ is geometric parameter:

3
D= h,
6(1-+")

is total flexural rigidity of both face plate

Tt should be assumed that the pane edges for the
simply supported case, the forced damped normal mode
of panel can be obtained by:

y, (3) = sin (umx /a)sin (vay/ b) (13)

where, (u, v) 1s the integer indices of the Ith panel mode.
According to the method of modal analysis, the panel
velocity at location o on the panel can be expanded as:

W (0) = [y ] [W] (14

where, [Wy;] is the modal velocity amplitude matrix.
Substituting Eq. 13 and 14 into Eq. 12 yields a
characteristic polynomial equation in A

W g (14 VIR — oA+ g']=0 (15)

Here A =un/ay + (vn/by
For simply supported conditions, the complex natural
frequency can be obtained by:

3 ' 2
pr(Hjn):E{ih BASRE } 1)
n Atg

COUPLING RESPONSE OF STRUCTURAL
BACOUSTIC

The fluid-structure interaction generates the coupling
between the dynamic equations of fluid and panels.
Consider the equation of forced motion of the Mth mode
of vibration of panel:

M;[W+®§M(l+jan)W]:P§“ (17)

In this equation, M%,, P2, W are, respectively, the
generalized mass, the generalized force and the
generalized displacement of the panel mode defined
by (0, v).
where, the generalized mass ME, 1s defined as:

M}, =1, Wii(o)do (18)

If the incident pressures are harmonic functions of
time then the external part of the generalized force is given

by:
P::L = _J.AFPaxtlpM (G)dG (1 9)

The generalized force represented by matrix [p:*] and
the modal amplitude matrices for the panel velocity [Vy,] 1s
represented by:

[V ]=[Z. '[P (20)

In this equation, [Z,] is the panel nput modal
impedance matrix, which is defined by:

[Z6]=[Zep ]+ [Z2s] ey
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where, [Z,] is the panel modal input impedance without
mfluence of the backed cavity (Pan et al., 1990):

g 7 (22)

with £f = j(My, / kA, )k, 0+ m- K]

BN,IBN,I /CJ; BN,IBN,M /CJ.;
[Zen]=pe| (23)
BN,IBN,M /CJQ BN,MBN,M /(:Q

In Hq. 23, [Z] is the contribution of the backed
cavity to the panel input impedance.

The interaction of the interior sound field with the
panel 1s represented by the velocity continuation at the
internal surface.

Substituting Eq. 4 and 20 into Eq. 3 get:
Pre)=[b, [ (2112, 1B)'] @4)

The mean-square sound pressure is related to the
acoustical potential energy in the cavity as:

(PP") = (U/ V) P.Edr (25)
The noise reduction defined as:

[

NR = -10log g‘? (26)

=T ext

which 15 used to characterize the mean-square sound
pressure response in the cavity relative to external sound
pressure.

The panel average input impedance is defined as:

AN

Zyy=—10log 50

et ot

27

which is used to describe the mean-square panel-velocity
response, ration to the average external sound pressure
level.

NUMERICAL ANALYSIS

The validity of the all program was verified by Matlab
software package. Numerical analyses are conducted

Table 1: Geometric and material properties of the PC pane-cavity systermn
Dimension of enclosure a=044b =094, d =0.625

Density of air =121 kgm™
Speed of sound c=330msec?
Modulus elasticity of polycarbonate E=24x10° Nm™
Poisson=s ratio v=0.38

Density of face plate P =1200kg m™>
Density of core g =1.20p,
Thickness of face plate h;y =h, 0.002m
Thickness of core h2 =0.002 m

Table 2: Natural frequencies and damping of the cavity

N (1, m, n) i (Hz)
1 {0,0,0) 0
2 (0,0,1) 275
3 {0,2,0) 366
4 {0,2,1) 458
5 {0,0,2) 550
6 02.2) 660
7 (2,0,0) 782
8 (0,0,3) 826
9 (2,0,1) 829
10 (22,00 863

using the configuration shown in Fig. 1 and the modal
damping factor of cavity is given by 1, = 4.47/100w 4
with other parameters listed in Table 1. In case of vehicles,
the interior noise generated by structural vibration that is
caused by the external sources predominated at low
frequencies. Hence, analytical frequency range has been
restricted to 1000Hz in thus study.

To study the performance of the structure and
acoustic interaction problem, the natural frequencies
analysis for the 2D pane and the 3D acoustic cavity are
wvestigated first. The number of modes used for
structural response and acoustic decomposition is the
main factor affecting the accuracy of the solution. The
modal coupling analysis 1s considerably simpler and
efficient in computation and plate characteristic functions
represent plate modes more accurately and yield more
accurate estimation of noise transmission performance.
The total twenty cavity and pane modes are used to
satisfy the convergence of the accuracy.

Table 3 gives the variation of the natural frequencies
and modal loss factor with the core loss factor for all
edges simply supported pane. In creasing the values of B
increases the modal loss factors yet without appreciably
changing the natural frequency values.

Table 4 gives the variation of the natural frequencies
and modal loss factors with the core shear parameter g*
of pane. It is seen that mcreasing the values of the shear
parameter g* increases the natural frequency values but
the loss factor is not regular form changing. The reason is
that the core becomes high stiff with an mcreasing the
value of g’. There is no special rule to explain such a
behavior, since the modal loss factor depends in a
complex expression on the shear parameter, as can be
seen from the equation (16) for simply supported edge.
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Table 3: Natural frequencies for various the core loss  factor Table 5: Natral firequencies for various geometric parameter Y (g = 10,
Beg*=10Y=12) p=03)
p=0 B=0.5 p=1 Y=68 Y =203 Y=307
M (uw Ty Mg Ly Ny L Ty M (v £ Ny fr i fr i
1 1,1 21 0 22 0.209 23 0.326 1 1,1 17 0.119 26 0.142 31 0.147
2 (1,3) 41 0 42 0.267 43 0.465 2 (1,3) 34 0.139 49 0.184 58 0.194
3 (1,5 72 0 72 0.262 74 0.491 3 (1,5 63 0.123 84 0.188 96 0.207
4 (3,1 93 0 94 0.241 95 0.462 4 (3,1 83 0.108 107 0.179 121 0.202
5 (3,3) 106 0 107 0.228 108 0.441 5 (3,3) 96 0.100 120 0.173 135 0.197
6 (1,7 112 0 113 0.222 114 0.431 3] (1,7 102 0.096 126 0.170 141 0.195
7 (3,5) 132 0 133 0.204 134 0.399 7 (3,5 122 0.086 147 0.159 163 0.187
8 (1,9 163 0 163 0.18 164 0.354 8 (1,9 152 0.073 178 0.145 195 0.174
9 (3,7 170 0 170 0.175 171 0.345 9 (3,7 159 0.071 185 0.142 203 0.171
10 (5,1) 208 0 208 0.152 210 0.301 10  (5,1) 198 0.060 224 0.127 242 0.156
Table 4: Natural frequencies for various shear modulus g* (3 =03, Y =12) 60 —
g =1 g* =10 g% = 100 =0
M @ f T L Thv f Thv
1 (1,1) 12 0.132 21 0.133 29 0.027
2 (1,3) 24 0.082 41 0.165 66 0.058 b
3 (1,5) 48 0.046 72 0.159 128 0.098 E
4 3.1 67 0.034 93 0.146 171 0.118 E |
5 (3.3 79 0.029 107 0.138 197 0.128 Z
6 (1,7 8 0.028 112 0.134 207 0.131
7 (3,5 103 0.023 132 0.123 243 0.142 -
8 (1,9 132 0.018 163 0.108 295 0.153
9 (3,7 139 0.017 170 0.105 306 0.155 4
10 (51 176 0.014 208 0.091 365 0.162 1
b
Table 5 gives the variation of the natural frequencies % 200 400 600 200 1000

and modal loss factors with the geometric parameter Y of
pane. It 1s seen that mcreasing the geometric parameter Y,
mcreases the modal loss factors while keeping other
parameters constant.

Figure 2 shows the effect on the noise reduction with
frequency, for variation the core loss factor P. Tt is seen
form Fig. 2 that there are dips in the noise reduction
curves corresponding to the cavity resonant frequencies
and the noise reduction curves tend to merge at these
frequencies. The effect of the damping material 15 to
smooth the noise reduction curves with higher noise
reduction.

Figure 3 shows the effect on average panel input
impedance, for variation the core loss factor . It 1s seen
from Fig. 3 that there are many peaks while p = 0, this is
because the whole panel is high stiffness, the core loss
factor has no attribution to the noise dissipation. Tt is
seen from Fig. 3 that significant increase in the T, of the
sandwich pane is obtained with increase in loss factor of
core. But the effect of B on the TL is very minimal for
lower value. The reason is that the loss factor B of high
shear parameter 1s times of low shear parameters seen
from Table 1.

Figure 4 shows the effect on noise reduction, for
variation the core shear modulus g*. For very low
frequencies, there are obviously more dips in the noise
reduction curve while g* = 1 comresponding to the

Frequency, (Hz)

Fig. 2. Effect of core loss factor B on noise reduction ©,
cavity resonances; A, structural resonance

Zimp (dB)

20

—p=0
—--—-[=03
1of —p=05 1
——po1
. , , , X
0 200 400 600 800 1000

Frequency, (Hz)

Fig. 3: Effect of core loss factor p on average panel input
unpedance

structural resonant frequencies. But the effect on the
noise reduction is small at high frequencies. Hence it
could be improved in noise reduction by choosing proper
shear modulus of core.
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NR (dB)

] 200 400 600 800 1000
Frequency, (Hz)

Fig. 4: Effect of core shear modulus g* on noise
recction

80

70
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—mmmnTTE=me——
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Zimp (dB)

30

20

..... g*=1
10 b — gt=10 4
—_—g* =100
0 A L L L
0 200 400 600 800 1000

Frequency, (Hz)

Fig. 5. Effect of core shear modulus g* on average panel
input impedance

Figure 5 shows the effect on average panel input
impedance, for variation the core shear modulus g*. Tt is
seen from Fig. 5 that there is an optimum value of the core
shear parameter Y for maximum damping effectiveness.
The dips of average panel mput impedance 13 lower, if the
modal loss factor is higher according to Table. 4. Tt should
be choose proper core shear parameter g* to ensure
unprovement the noise reduction at the pane resonant
frequencies.

Figure 6 shows the effect on noise reduction for
variation the geometric parameter Y. Tt is seen from Fig. 6
that the pane noise reduction 1s improved with increasing
the geometric parameter Y m low frequencies. Hence, it
should be chose proper geometric parameter ensure better
noise transmission performance at the structural
resonance. There are dips in the noise reduction curves
also corresponding to the cavity resonant frequencies.

60

NR (dB)

1] 1 1 1 P
0 200 400 600 800 1000

Frequency, (Hz)

Fig. 6: Effect of geometric parameter Y on noise
reduction

Zimp (dB)

0 " M 2
0 200 400 600 800 1000

Frequency, (Hz)

Fig. 7. Effect of core geometric parameter Y on average
panel input impedance

Figure 7 shows the effect on average panel input
impedance, for variation the geometric parameter Y. Tt is
seen from Fig.7, if noise reduction curves exhibits dips at
structural resonance frequencies, there are also peaks
shown in the average panel input impedance curve.

CONCLUSION

The work presented m this note demonstrates the
possibility of using sandwich PC pane to control noise in
an acoustic enclosure for automobile application. The
core of sandwich PC pane can be made from a more
lightweight and less expensive material, while
polycarbonate face sheet bearing load capacity.
Simulation results reveal that, a high noise absorption
capability over a wide frequency can be obtained using
the proposed design, which provides an alternative way
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for noise control of the discussed configuration using
passive technique. However, it is noted that the
dimension of the cavity is another factor affecting the
effort.
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