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Abstract: There is a constant need for correct and meaningful statistical prediction. The General Linear Model
(GLM) 15 a commonly used method to fit the data although most of the times the target 1s to construct a linear
model in order to “predict” the value of the dependent variable; a goal for which GLM has not been designed
for. The aim of the present study is to work on best model for a future observation, adopting the tolerance
regions concept. A new method is explained and demonstrated, which is an alternative approach for choosing
the optimal order of a response polynomial. The present study proposes a novel algorithm, which selects the
best response polynomial, as far as prediction is concerned. The beta expected tolerance region is applied. The
proposed computational approach has been applied for several data sets. This analysis, confirms the utility and
the advantage of the method which provides non trivial results.
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INTRODUCTION

In the well-known linear regression analysis
(Seber, 1977; Stewart and Gill, 1991; Maddala, 1992)
among others, the main target is to obtain a fitted
response function for the collected data. The objective is
to choose that model among the candidate models which
fits the data and work so that this model “best” predicts
a future response. The selected model should provide the
“best”, under some criterion, future response, for a given
future mput variable. In the present study, the best
predictive linear model (Geisser, 1993; Yu and Ally, 2009)
will be analyzed in order to be algorithmically determined.

Various potential uses of the regression equation are
considered: pure description, prediction, control, model
building etc. The cwrent study focuses on prediction
considering that the underlying model is linear. The
procedure which is going to be developed adopts the
expected P-content tolerance region for the future
response (Guttman, 1970b) and the minimax criterion, in
the sense that among all the “worst cases”, those with the
maximum tolerance region choose the minimum, the best
one.

One important remark is that in the vast majority of
the applied cases, a “make sense™ model to fit the data of
the problem is needed. However, this demands a general
linear model to be constructed selecting the best fitting

polynomial according to a criterion that ensures best
future predictions. This model differs significantly from
the best fitting polynomial with respect to a criterion of
curve minimizing “distance” from data. The potential use
of the proposed algorithm 1is prediction.

MATERIALS AND METHODS

Background and theory: The classical general linear
model (GLM), 1s defined as:

Y= X0+oe (1)

where, YeR™!, Xc™ @0 BeRE ec B with R being
the set of kx1 matrices. From a statistical point of view Y
is the observed random vector of responses, X is a matrix
of known constants based on the p input variables, 8 is
a vector of unknown parameters and e is an unobserved
random vector of errors with:

E(e)=0, E(ee) =1, (2)
with Oeh™ is a vector of zeros, [,-diag (1,1,...) is the unit

matrix and ¢>0 unknown. Usually, when statistical
inference is performed, the following assumption is made:
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¢~N(0, 1) (3)

with mean vector O and covariance matrix I, Given a
realization of Y, a joiunt (1-¢) 100% confidence region of
the parameters 8 can be constructed:

ce) ={0:(0-HEX)(O-0) < psFp. v:1- o)} 4

with v = n-p, « 1s the significant level and F, as usually,
the F distribution, with p and v degrees of freedom and s°
the (unbiased) estimate of o°. The ellipsoid (4) plays an
important role either to impose experimental design
criteria, or to decide which input vanable X, X,,...,
X e™ will be assumed participating to the model,
(Hocking, 1976).

The confidence mntervals are widely used m statistical
estimation. The idea of a confidence interval s based on
defining a region which contains the parameters under
investigation with a certain probability level, usually
(1-0)100% with & = 0.05. However in many applications
like industrial applications it 13 desirable to have a region
that contains a certain portion of the production with a
predefined probability. That is the idea of the tolerance
region, (Wilks, 1962; Guttman, 1970a; Boente and Farall,
2008) which seems the appropriate one.

In principle a statistical tolerance region is a statistic
Q(X, y) from ®* to the Borel o-algebra B in ®" and
therefore exist functions L (X,.....2), U (X,...., X} such
that:

QXY= KT ) U X)) )

(6)

Sampling the random variables from a continuous
cumulative distribution a tolerance region is of the form,
(Wilks, 1962):

Xa9)= [ (K X o

.....

F (Xgou) ~ F(Xuy) ~ Beta (k. n—k, +1) ®)

with Beta (k, m) being the Beta distribution and X, 1s the
jth order statistics. If a sample 1s taken from a continuous
distribution function, with

k=r«

then the confidence level £ 1s:
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y:lflﬁ(n72r+1,2r)

where, I; (p. @) is the incomplete Beta distribution. It
seems more appropriate in applications to be referring to
B-content tolerance region at confidence level y if and

only 1if:

(10)

For the B-expected tolerance region a dominant role
plays the pioneering Lemma of Paulson (1943) for the
defined lower and upper limit L. =T, (30) and U = U (X),
respectively and for a given function T with
distribution function G, the expected value ofis B, E

(A)=p:

A= Tdc}(t) (11)

Ellerton et al. (1986) mtroduced the idea to apply
tolerance region for choosing the best linear model with
one variable, while Kitsos (1994) adopted the invariance
principle to extent this idea. Muller and Kitsos (2004)
adopted the P-content tolerance regions to comstruct
optimum experimental designs. Moreover, they proved
that invariant tolerant regions are equal in both
frameworks: Bayesian and Classical. In tlus study the
B-content tolerance regions is adopted to construct the
best predictive linear model.

B-expectation tolerance regions: Consider the General
Limear Model (1). Given a realization y of Y it 13 desirable
to construct a region Q(X, y) such that the vector Y* of
the future observations Y|, Y,',..., Y, will lie in Q(X, y)=
HR™ with a high probability. It 1s assumed that the vector
Y* of future responses will follow model (1). Therefore for
a given matrix X* of the input observations will hold:

YH=X*0+ce* (12)
with e*~N(0, 1), 0eR™".

Thus, the distributions of Y*, is defined by the same
parameters 0, ¢ from the parameter space & = R*xR" with
elements® = (0, o). Moreover for given parameter vector
0.Y and Y are assuming independent. Since the aim is to
construct a region Q(X, y) it should be emphasize that is
impossible to construct the region Q(X, y) so that:

» Y eQ(X, v) with high probability
* The above is true for every parameter vector® = (8, o)
and every realization y of Y
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The probability that Y* given lies in Q(X, y) is
P.IY ' eQ(X v)]. As Q(X, v), the tolerance region, cannot
satisfy simultaneously 1 and 2 as above, the average
tolerance region known as [-expectation tolerance
region is used. Thus, by definition, Q(X)y) obeys
to:

[Py € QUX, yilf pyidy = P (13)

for every BeR? (Guttman, 1970b).

The so defined B-expectation tolerance region can be
proved that is also a prediction region (Muller and Kitsos,
2004).

Theorem: For the linear model (1) the P-expectation
tolerance region Q(X, y), Classical or Bayesian, is
evaluated:

(w—X"d)y<s—

QX y)={we " (w-XBY 5(x) 5 Fans)

(14)

where, 0 = (}X’X)™'X’y is the Least Square Estimate (LES)
of 6 and s%, S(3) equals:

=& (X,y)=(y-X0)(y- X8) (15)

S(X)=1, + X' (XX) X" (16)

with F, .. the p quantile of the F distribution with
m and np degrees of freedom. It can be also proved,
that:

S(X)=1, - X' (XX + X"X)'X =1, -M(x) (17)
with the defimtion of M (x) obviously obtamed. This
notation 1s followed at the presented algorithm. It can
further be proved that the B-expectation tolerance region
defined as in (14), is also a Bayesian one with respect to
8. Following (14) and working for the one variable degree

polynomial the length L, (x) of the tolerance region can be
derived equal to:

-1 12 RSSF "
L x)=2t (B2 (n-p)y” s, {S‘I—(XJ

] .
S7{x)

but it is easy to prove that (Ellerton et al., 1986):

(18)
1
1-M(x)
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(K X, ) (X', CX,y )

Mx) =X' CX_ - (19)
» e TTX_CX,
with C = (X"X) ™. If m(x) = X, CXt then:
M) = M) (20)
1+m(x)

To get the maximum of M(x) it is required that
Mix) = O= X’ Cx,, = 0 with the dot sign denoting the
corresponding derivative. Thus:

M) <0 X', CX, +X, CX,_ <0 (21)

For a complete presentation see also the constructed
algorithm Appendices A and B.

Algorithm for the best predictive model: For a given
future response, under the linear model (1), the B-
expectation tolerance region can be constructed. To
identify the best predictive model the following algorithm
is proposed based on the volume of the “future” ellipsoid.
The largest volume of the [-expectation tolerance
region corresponds to the worst case of the input
variables set, as far as prediction concerns. The
minimum -expectation tolerance among the worst models
1s those with max P-expectation tolerance region 1s the
best one.

An algorithm based on the mini-max criterion can be
constructed now, 1 order to find the “best™ linear model,
based on the following basic steps:

Step 1: Fit all possible linear models for the subsets with
k variables from p, k = 1, 2,..., p, normalizing
x:Xe[-1,1]

Step 2: For the corresponding k variables calculate the
B-expectation tolerance region Q, and select that
k which corresponds to the largest f-expectation
tolerance region

Step 3: Among the max tolerance regions for the

differentk =1, 2, .., .p choose the mimmum one.
So choose the best subset of variables which

corresponds to k, = min, max. {Q, Xy,
k=1,2..,pmj=172}

The above Algorithm is applied to a number of
applications and different datasets (see section 3),
investigating its behavior on various circumstances.
Based on the previous discussion, the following algorithm
has been mtroduced, for fitting the “best” predictive
model for n measurements {x, y;}.
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1. Read data X and data Y

2. Normalize data X in the interval [-1,1]

3. Forp=0tok
4. BEvaluate matrix X=X, for the pth order model

5. Define matrix X,

6. Evaluate vector O with the estimators of GLM model of pth order

é: x X)'l XY

7. Solve the equation:

X, (XXX, =0

8. Check if its roots satisfy the relation:

M(x) =X, (X307 X, X, (XX X, <0

9. Evaluate the length L, at the point x which satisfy steps 7.8

Ly (%,) =26, g (0op) ™2 8 (I, O, X ) )2

Where, 5 —RSS=(V-X 6y (Y:X §)

10. E aluafe function L, at the end points-1 and 1.

11. Store the maximum Ly(.) value of those obtained from (8) (%) and (10).
12. Equivalently steps (7), (8), (9) and (10) can be replaced by calling a
subroutine that evaluates x that gives

Max [X,, (X°X) ™! X,p] with-1<20<1

RSS

1/n—p-l

13. Evaluate RMS for the best fitted polynornial of p-th order

RMS =

14. Repeat parts (4)-(13) for p=0,1,2,... k.
15. Choose the minimum of the stored maximum “lengths”.

The corresponding p value is the degree of the response
function for the best predictive model. In addition the best
fit model according to the conventional method is the one
with the minimum RMS.

The flow chart of a critical part of the algorithm is
given in the Appendix A, while a particular
implementation in Mathematica is shown in Appendix B.

RESULTS APPLYING THE METHOD

In this section various results are presented that
show the added value of the proposed methodology
compared with the commonly used practice to choose the
fitting model. The databases in use, have been selected to
carry different characteristics, in order to test the
algorithm and the method.

Dataset T : Strong linear correlation: First, the dataset T
is studied. Tt comprises data that exhibit a strong linear
correlation. DataX: x=1,1,2,3,4, 5 7. DataY: y=7.1,7,
101,121,15.1,18.1,23.1. Table 1 shows the estimations
based on the algorithm and the corresponding program in
the Appendix B. Based on the procedure discussed in
Section 2 the value [L,(x)]= 1.29 is estimated (fourth

column of Table 1) and hence the corresponding model is
the second order polynomial:

Y =15.1447 + 8.047x

This is the model which according to the proposed
prediction criterion (based on tolerance regions
framework) “best” predicts the future observation,
(Fig. 1). However, this is not the model according to the
traditional distance RMS criterion. The latter criterion
selects the fifth order polynomial (Figure 2). Most of the
methods which use a distance criterion for choosing the
most appropriate polynomial have a tendency to peak a
large order polynomial, as it is shown in Fig. 2. It is
obvious that even for this very simple dataset the
proposed method suggests a non trivial difference. Tf
the designer of an experiment wills to peak a
polynomial that best fits data, as far prediction is
concerned, then the proposed method gives distinctive
results.

Dataset IT: Not strong correlation: Here the dataset IT is
considered:

Data x: 1,1,1,2,3,4,5,6,6,6,7,7,7,7,7,7,8,9.8,8,9,9,9,
9,10,10,4,4,5,6,11,11,12,12,13,13,14,14,15,15,16,16,17,
17,18,18,19,19,20,21,22,21,22,24,20,21 22,23,24,25 26,
27,28,29,30
Datay:14,13,12,10,11,10,9,9,8,8,7,7,6,7,7.6,12,11,10,
9,8,7,6,8,9,6,10,7,7,6,6,5,5,7,7,6,6,7,7,6,6

R N R ) R e At R R B T R R T B R R )

8.8.6,6,7,5,5,4,3.5,4.5,5,5,5,6,6,6,7.,7.8,6,7,8,7.8

This dataset comprises no strong correlation as it can
be observed in Figures 3, 4. The relevant mathematical
quantities have been evaluated and presented in Table 2,
where the critical quantity min {max [max [L, (x)]} = 6.536
15 depicted. Hence, the comresponding model 15 the
second order polynomial:

T=584795-1.70747 x+3.8513 x’

This 1s the model which according to the suggested
criterion  “best” predicts the future observation,
(Fig. 3). However, the model according to the traditional
RMS criterion 15 the fifth order (Fig. 4).

Table 1: General Linear models up to fifth order and their evaluation according to both criteria for dataset I. RMS denotes the factor RMS of the p-th order
polynomial while maxL, denotes the maximum value of the length L, of the p-th order polynomial

P Fitted Model RMS, maxL (+)
0 YT =13.23 35.349 25.407
1 Y =15.1447+ 8.047x 0.066 1.290
2 Y =15.166+8.042x-0. 043 0.081 1.561
3 Y =15.183+8.299x-0.41,1-0.291x° 0.102 1.735
4 Y =14.936+ 8.915x+2.895x°-0.896x-2.753x* 0.040 1.549
5 Y =15.149.806x+0. 003:-7.940:53-0. 0286, 1590 0.005 1.320
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Table 2: General Linear models up to fifth order and their evaluation according to both criteria for dataset IL. RMS denotes the factor RMS of the p-th order
polynomial while maxl., denotes the maximum value of the length I of the p-th order polynomial

P Fitted Model RMS, maxL,(e)
0 Y =7.32308 4,573 8.779
1 Y =6.98406-2.16625 x 3246 7.651
2 Y =584795-1.70747 x+3.8513 x™2 2.105 6.536
3 Y =5.88263-1.22885 x+3.75222 x"2-0.853556 x"3 2.119 6.961
4 Y =6.356-1.729 x-0.538 x"2-0.099 x"3+4. 777 x4 1.992 7.109
5 Y =6.278-3.754 x+0.51 7 x"2+0.571 x"3+3.527 x"4-8407 x"5 1.900 7.263
20f E
o 10F }\_//
C 4F ., °
SE C
C 2F
T T T T T T T T T T - T T T T T T T T T T T T T T T T 1] T T T u T T T T T T T T 1] T
1.0 0.5 0.5 1.0 1.0 0.5 0.5 1.0

Fig. 1: Best fitting polynomial for prediction Y = 6 X for
dataset I.xrepresents normalized X to the interval

[-1.1]

Fig. 2: Best fitting polynomial Y = 6 X according to the
RMS (Root Mean Square) criterion for dataset T.x
represents normalized X to the interval [-1,1]

As it can be seen in the scatter diagrams, Fig. 3 and
4, there is not a strong correlation between Y and X data
in the measurement space. In such cases, the selected
RMS model differs almost always from the “best” model
for prediction in the initial region of interest.

Dataset ITI: Strong nonlinear correlation:

Datax:1,2,3,4,56,7.8,9,10,11,12,13,14,15,16,
17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
Datay:6,7.8,9,10,11,12,11,10,9,8,7,6,5,4,3,2,
3545.6,667,7,867, 8, 7,8
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Fig. 3: Best fitting polynomial for prediction Y = 6 X for
dataset TT=represents normalized X to the interval

[-1.1]

o
°
°

°

TPTT T I T T T T T TR T T 17T
°o o
°
°
°
o
°
°
o
°

Fig. 4: Best fiting polynomial Y 0 X according
to the RMS (Root Mean Square) criterion for
dataset 11> represents normalized X to the interval

[-1.1]

It can be understood from the scatter diagram,
(Fig. 5), that there 1s a quite strong nonlinear correlation
between Y and X data for a considerable portion of the
data. Based on the analyzed procedure the value min {max
[max [L, (x)]} = 5.334 is associated to the fourth order
polynomial:

Y=4519-5720x+17.61 x°+6.832 x°-16.336 x°

This is the model, shown in Fig. 5, which
according to the proposed criterion “best” predicts the



J. Applied Sci., 13 (4): 513-524, 2013

TT T 1T Tg 17

Fig. 5: Best fitting polvnomial for prediction Y = 6 X for
dataset TIT. xrepresents normalized X to the interval
[_1 71]

°
°
°

P SSLINLINLINE B O |

T
of o
°
°
°
°
°
°
°
°

°

°

TTTT T TrrrT

Fig. &: Best fitting polynomial for prediction Y = 6 X for
dataset IV . *represents normalized X to the interval
[_1 71]

future observation. In this case, this 1s the model
according to the traditional RMS criterion too.

Dataset 1V: Not strong nonlinear correlation:

Datax: 4,4,5,5,6,1,2,2,3,3,1,1,1,2,3,4,5,6,7,
7.,7,7,8,9,10,11,12,13,14,15,16,17,18,19,15, 19,
19,20,21,22,23,24, 25, 26,27, 28,29,30,15,15, 16,
16,17,17,10,10,11,11,12,12,13,13

Datay: 11,12,12,13,12,5,10,11,9,10,6,7,7,7,8,9,
10,11,12,13,11,12,11,10,9.8,7,6,5,4,3,2,3.5, 4.5,
5,55,6,66,7,7,8,6,7,87,88,9,67,56,11,10,
11,10,10,9,9, 8

In this case, the algorithm evaluates the value min
{max [max [L, (x)]} = 6.849 and hence the corresponding
model is the fourth order polynomial:

¥=5.981 -6.955 x+12.309 x> +7.359 x°-11.065 x*
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7x10
6x10

5%10

4x10

Fig. 7: Best fitting polynomial for prediction Y =6
X.x represents the normalized to the interval
[[1, 1] X which 1s the number of industry
employees in UUSA (2007) and Y their annual

payroll

This 18 the model, illustrated n Fig. 6, which “best”
predicts the future observation in conformity with the
discussed criterion. However, the model according to the
traditional RMS criterion 1s the {ifth order. As can be seen
in Fig. 6, there 1s no strong nonlinear correlation between
Y and X data. Tt is now apparent from the comparison of
both Fig. 5 and 6 that the proposed methodology
suggests different polynomial as the best for prediction in
cases of data that are more dispersed and with nonlinear
behavior.

A business example: In this example data refer to
Manufacturing-Selected  Industry  Statistics by USA
State (http: /wrawrw.census.gov/compendia/statab/201 2
/tables/12s1008 pdf). A sociologist in order to write
a study regarding employment needs to have a
general linear model that relates the number of
employees in USA (X) as a function of their annual
payroll (Y). Tt is easy to understand that a scientist
often does not seek to confirm an underlying
fundamental law (as n physics) but an expression
that relates two quantities which correlate. Tt is
obvious that a correct model is provided by a polynomial
ensuring best prediction (new values for X within
experimental region). This i3 the model a scientist should
search for.

The program of Appendix B provides results,
(Table 3), showmg that the best model for prediction 1s
the first order polynomial, shown in Fig. 7, while the RWS
criterion suggests the second order model. Thus the
proposed method leads to a different simpler model but
most importantly best as far as new “observations” are
concerned. Table 3 encompasses results where the
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Table 3: General Linear models up to fifth order and their evaluation according to both criteria. RMS denotes the factor RMS of the p-th order polynomial
while max L, denotes the maximum value of the length L, of the p-th order polynomial (number of employees in USA, x, and their annual payroll,

Y, at 2007)
P Fitted model RMS, maxl(+)
0 Y=1210 1.72 101 5.40 107
1 Y=34110434510% 1.57 1012 6.04 10°
2 Y =3.37 10M+3.56673*10"x+2.07 1 0Px? 1.31 1042 6.44 10¢
3 Y =3.38 10M3.60 107x+1.93 10°%x2-478079x° 1.33 10 6.65 1(F
4 Y=3.39 10"+3.86 107x+6.26 10Px2-2.96 1 0Fx*-4.58 1 0°x* 1.32 104 8.99 1(¢
5 Y =3.40 10°+3.81 107x+419270:2-9.31 105+ 1.01 10%cM+6.87+10P % 1.34 102 2.11¢°
Table4: General Linear models up to fifth order and their evaluation according to both criteria. RMS,, denotes the factor RMS of the p-th order polynomial
while maxL, denotes the maximum value of the length L, of the p-th order polynomial (x is the number of available engineers and Y denotes Industry
R and D expenditures for 2006)
P Fitted Model RMS, maxL,(+)
0 Y =4781.43 7.87 107 36502
1 Y =22606+23672.4x 1.3510° 18629
2 Y =19710.6+27071.2 x+8003x? 9.8810° 17783
3 Y =13115.1+12198.5 x+15457.4x*+17235.2:° 6.78 10° 14987
4 Y =13638.5-195.1 x-6922.29x>+29383 4x°+22510.5x* 6.14 10° 21210
5 Y =13857-549 x-10598 x°+26242+25949xM-3515x° 6.28 10° 74300

minimum value of the fourth column belongs to the first
order polynomial. Figure 7 shows the best predictive
fitting polynomial.

An investment decision example: In this example, data
concern UUSA Science and Engineering Indicators of year
2006, (http://nsf.gov/statistics/seind08/cO/cOa.htm). A
bank loan department i order to drive strategy regarding
industrial research finding, wants to have a crude
estimation regarding the relation of the number of
available engineers as a function of mdustry R and D
expenditures. It 1s obvious in this case too, that the target
is to find a best fitting polynomial allowing for trusty
predictions and not a polynomial “passing” closer to
existing observations.

The algorithm of Appendix B suggests that the best
model for prediction 1s the third order polynomial wiule
the RMS criterion suggests choosing the fourth order
model, Fig. 8. Thus the suggested method leads to a
simpler model and most importantly best for predicting
the experimental Table 4
encompasses results, indicating a minimum value in the
fourth column equal to 14987 and a minimum value in the
third column equal to 6.14 10°. Figure 8 shows the best
fitting first order polynomial.

values 1nside space.

A policy making example: In this example, data concern
Top U.S. Foreign Trade Freight Gateways by Value of
Shipments (Current 3§ billions) referring to 2008,
(http:/fwww . bts. gov/publications/national transportati
on_statistics/).

A government policy maker 1s mterested to find a
vague model with the help of a General Linear Model that
elates exports (x) with imports (y), based on data from
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50000
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20000

Best fitting polynomial for prediction Y = 6 X x
represents the normalized to the interval [-1, 1] X
which 1s the number of available engineers n
USA States and Y the amount of mdustry R and
D expenditures (for year 2006)

various major water and air USA gateways. [t 13 obvious
that best fitting polynomial according to the
proposed prediction the one that 1s
needed to be found. The implemented algorithm of
Appendix B reveals that the best model for prediction 1s
the first order polynomial since the minimum value
minimum v alue min {max [L, (x)]} = 111.3 belongs to the
p =1 polynomial in Table 5. Furthermore, the RMS
best model suggests choosing the fourth order model,
since the minimum RMS value is equal to 498, as
shown in Table 5. Therefore the presented method
leads not only to a simple model but also to the best
for predicting values imside the experimental space.
Figure 9 shows the best fitting, first order polynomial, as
well as the data exlubiting large dispersion

a

criterion  1s
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Table 5: General Linear models up to fifth order and their evaluation according to both criteria. RMS, denotes the factor RMS of the p-th arder polynomial
while maxI, denotes the maximum value of the length I of the p-th order polynomial (X represents the exports and Y denotes imports (2008)

P Fitted model RMS, maxL.f+)
0 Y=3291 1012.83 130.93
1 Y =57.87+47.19x 588.38 111.28
2 Y = 63.06+40.93x-18.01 x* 579.79 125.56
3 Y = 69.43+69.53x-29.27-44.495° 555.02 132.05
4 Y = 78.93+45.77x-131.65x°-20.91x>+109.51 x* 498.987 128.13
5 Y =80.68 54.94x-144.79x%-64.00:°+120.13x+35.57¢ 509.30 129.91

Table 6: General Linear models up to fifth order and their evaluation according to both criteria. RMS, denotes the factor RMS of the p-th order polynomial

while maxL, denotes the maximum value of the length L, of the p-th order polynomial (Y abdominal circumference and x gestational age)

differences with respect to other methods of polynomial

P Fitted model RMS, maxL,(+)

0 Y=3633 34751 76.69

1 Y =364.08-5.58x 345.04 79.60

2 Y =367.6-4.97x-11.28% 342,90 84.81

3 Y = 367.46-16.315-9.78x2+20.4 257 341.39 90.59

4 Y =364.57-19.71x+17.40x*+23.80x-31.91x* 342,86 9717

5 Y =364.42-24. 0+ 16.94:5+43.1 7x>-31.30x%-1 7.07° 350.28 102.92
10 E DISCUSSION
120 £ It 13 important in this section to discuss findings
100 F providing extensive interpretation and description of

Fig. 9. Best fitting polynomial for prediction Y = 6 Xx
represents the normalized to the mterval [-1, 1] X
which 1s the exports with Y denoting imports.
Data from various major water and air USA
gateways Top U.S. Foreign Trade Freight
Gateways by Value of Shipments (Cuwrent $
billions, year 2008)

A medical example: In this example, data concern
modeling abdominal circumference as a function of
gestational age in weeks (Hosmer and Royston, 2003). A
gynecologist 1s interested to find a polynomial relation
between abdominal circumference and gestational age for
the last tume length of the gestational period
(abd.cire.>40). Since this empirical law will be used for
future observations and predictions the doctor need to
find the best fitting polynomial according to the proposed
method. It 1s easy to find using the algorithm of Appendix
B that the best model for prediction is the first order
polynomial y = 364-5.6 x while the RMS method suggests
to choose the moedel y = 367.46-16.31 x-9.78x™420.42 x.
Thus the current study leads to a simpler and most
appropriate for prediction model. Table 6 encompasses
results where it can be seen that the mimmum value of the
fourth column happens for p =1 polynomial.
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data fitting.

At this pomt 1t 18 considered useful to give a brief
remind of the three distinct intervals that appear in
statistical analysis of data. In case of fitting a parameter to
a model, the accuracy or precision can be expressed as a
confidence interval, a prediction interval or a tolerance
interval which are quite distinct. Confidence intervals
provide information about how well the best-fit parameter
determined by regression has been estimated. Taking
many samples from a Gaussian distribution it 18 expected
about 95% of those intervals to include the true value of
the population best fit parameter. The crucial remark is
that the confidence interval mforms about the likely
location of the true population parameter. Prediction
intervals on the other hand inform where you can expect
to find the next data point sampled. Collecting many
samples (Gaussian distribution), it 18 expected next value
to lie within that prediction interval in 95% of the samples.
The key remark i1s that the prediction mnterval informs
about the distribution of values, not the uncertainty in
determining the population parameter. The richest interval
1s tolerance mnterval. It i1s determined by two different
percentages. The first determines “how sure™ it 1s desired
the value to be and the second expresses what fraction of
the values the mterval will contain. In case the first value
(how sure) is set to 50%, then a tolerance interval is the
same as a prediction interval. Tf it is set to a higher value
(say 95%) then the tolerance mterval 1s wider.

Most of the statistical criteria in model selection for
applications (Maddala, 1992) among others, are working
towards the target: find the model, which "best", under
some criteria, fits the data. These criteria are, in principle,
functions of the Residual Sum of Squares (Stigler, 1981).
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When the investigated mechanism between the controlled
variables and the (single) response 1s an engineering or
economic functional model (Draper and Smith, 1998;
Urbain, 1989), thus statistical approach seems suitable. For
dynamic models and non-independent errors the
Econometric Models for example are suitable. Usually
these best fitting models are applied for prediction too,
although the “distance™ criteria are not designed for this
purpose. In the present study the problem is tackled from
a different perspective. The chosen model 13 the one that
best predicts on the average the future value, which lie on
a certain mterval with some probability. This 1s aclhieved
using beta expected tolerance regions. So, while the
regression oriented prediction iz based on the
extrapolation or interpolation of the best model fitting the
data, the proposed method 1s based on a probabilistic
reasoning and provides that model which best predicts
next value within experimental region.

They key concept that allows for the developed

alternative approach 1s the tolerance regions Chew (1966)
provided a comparison between confidence regions and
tolerance regions. However, the entire background is
completely different (Guttman, 1970a). Various methods
have been established to obtain the minimum ellipsoid
(Pronzato and Walter, 1994; Bland et «l, 1981,
Cheung et al., 1993) from an optimum design approach.
As far as the tolerance regions concern it has been
proved (Muller and Kitsos, 2004) that the classical
tolerance regions coincide with the Bayesian one. But the
essential difference of the current study 1s that the target
is completely different: the beta-expected tolerance region
for the future observation it 1s not used as a design
criterion, but as a model fitting criterion and provides, as
it is discussed, the best predictive general linear model.
Thus 15 the essential difference of the work attempted with
the existed theory: there 1s no model fitting attempted so
far under the tolerance region framework.
As a last remark 1t should be mentioned that the cross
validation method (Shao, 1993) should not be confused
with the present study. In this method the background 1s
completely different since the idea is to try to test how
well a polynomial performs for prediction using a portion
of data. On the other hand, the present study utilizes all
data and selects the best polynomial for prediction.

Thus the presented method differs nontrivially as far
as the interpretation is concerned from all other methods
that best fit the data with a distance criterion.
Furthermore, the current method suggests in many cases
different models. This was shown for all investigated data
cases which were belonged to different fields of
application. Furthermore, evaluation with the help of the
developed algorithm reveals that there 1s enough
evidence that the proposed method works well In
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summary, the findings of the numerical study of the
methodology reveal that the selected polynomial model
according to the best prediction criterion does not have
the inherit property to peak the largest order polynomaial
as the best model. This is a not a desired property usually
associated with methods using distance criteria (RMS). In
addition, the analysis of all datasets shows that for data
with large dispersion, the proposed method peaks always
a polynomial of different order from this suggested by an
RMS criterion.

CONCLUSION

The study of the results revealed an affirmative
conclusion for using the proposed method n scientific
and technological applications. There 1s a strong
theoretical background that ensures the success of the
method to any applied field. Tt was shown that for several
datasets the selected polynomial differs from the
commonly selected one, if the choice respects the
criterion of “the best predictive model”. This is not to
mean that there are no cases where the two methods
suggest the same polynomial

Therefore, it would be safe to conclude that for most
models in sciences, such as FEconomics, Medicine,
Psychology, Sociology as well as in Industry and Quality
control, the presented proposal provides a powerful
insight mto scientific/research practice, adding a real,
indispensable value to it. As a result, in cases such as the
ones outlined in this study, it is not considered useful and
correct modeling to find a curve as closely as possible to
the data. Instead, it 13 desirable to guarantee that a curve
is going to fit to the given set of data based on a best fit
polynomial that is most adequate for the prediction of the
Y value for a certain X (within the experimental region),
establishing a specific degree of high probability.

As a future research it is worth to generalize the
proposed method for problems with multiple independent
variables or for cases like (Gikas and Stratakos, 2012;
(Zarikas et al., 2010). It would also be interesting to
develop mtegration with the experiment design approach
(Mead, 1991 ; Mejza and Mejza, 2012). Although, m most
of the cases in classical experiment design theory the
models are linear, still these approaches are based on
the typical regression analysis (Oliveira and Oliveira,
2012; Valente and Oliveira, 2011; Pereira et al., 2012) and
not to the tolerance regions adopted in this study,
beyvond the regression analysis to fit the model
Another interesting investigation is to develop a strategy
handling extrapolation. Extrapoelation needs special care
for the proposed method since an extension of the
experiment/measurement space 1s needed.
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APPENDIX A. FLOW CHART
Fit the pth model-determine
A critical part of the algorithm regarding the M (x)-find the roots in (-1,1) call them
appropriate selection of the order of the polynomial Xt=l....8
15 shownin the form of a flow chart mFig 10, 11.
Determine M (x))
® 90 -
_ o< <0 | Max.atx, =¢,
= M
T=t+ Min. 2t x, x) | evaluate L (e)
Yes =0
t<s Sadle point
No »
Evaluate L, (-1), L, (1}. Pick 5
upthemaxofL, ('1):1'1.(1)9 Lp (3Js 2 3
xofl, (.1 @06
Fig. 11: A critical part of the algorithm regarding the
Yes [ ot appropri te selection of the order of the
polynomial. Flow chart, part 2 of 2
No APPENDIX B. CODE FOR “MATHEMATICA”
o datax=......
Yes datay =.....
Write max, data = Table[ {xTRN[[m]], datay[[m]]}, {m, Dimensions[datax][[1]]}];
P=12..k Y =Table[{datay[[n]]}, {n, Dimensions[datax][[1]]}]
| tstud[n_] =
Sqrt[-nt (1n™(0.05*(Sqrt{n] "Beta[n/2, 1/2DY/(1+ n)y{-D];
Choose Min Max, ) )
n = Dimensions| datax][[1]];
I DDOWN = Min[datax];
Write corresponding UUP = Max[datax];
to Min Max and the pth
Model A = (UUP+ DDOWNY/2 ;
B =UUP-A;

i XTRN := (datax-A)/B
“ K[0] =Table[ {1}, {i, Dimensions| datax][[1]]}];

X[1] :=Table[{1, xTRN[[i]]}, {i, Dimensions[datax][[11]}];

Fig. 10: A critical part of the algorithm regarding the _ _ _
appropriate selection of the order of the }]()[ﬂe:;:::ﬁgi:axﬁ?[mgl]] XKIRNILIF2), G

polynomial. Flow chart, part 1 of 2 X[3] :=Table[{1, xTRN[[i]], <TRN[[]]"2, xTRN[[iT}"3}, i,
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Dimensions[datax][[1]]}];
X[4] := Table[{1, xTRN][{]], xTRN[[i]}"2. xTRN[[{]]"3,
xTRN[[i]]"4}, {i, Dimensions[datax][[11]}];

X[5] := Table[{1, xTRN[[i]], xTRN[[i]]"2, xTRN[[i]]"3, xTRN[[i]}*4,
XTRN[[i]]"5}, {i, Dimensions[datax]|[[1]]}];

Xop[0] = {{1}}; Xop[1] := {{1}, {t}}; Xop[2] == {{1}, {t}, {t"2}};
Xop[3] = {{1}, {t}, {t"2}, {t"3}};

Xop[4] = {{1}, {t}, {t"2}, {3}, {t*4} };

Xop[s] = {{1}, {t}, {t"2}, {t"3}, {t™4}, {t"5}};

EXPR = (Xop[i]\[Transpose] Inverse[(X[i[\[ Transpose]. X[i)]. Xop[iDI[11];
MAX[nn ] := (i =nn; NMaximize[ {EXPR[[1]],-1 <=t <=1}, 1]);

LP = 2*tstud[ Dimensions[ datax][[ 1]]-1]/Sqrt[
Dimensions| datax][[1]]-i] (INV81pY(1/2)*(RISp)y™(1/2);

[ =Inverse[X[i]\{ Transpose]. X[i]].(X[i]\[ Transpose]. Y);
RSSp = Transpose[ Y-X[i]. 4] . (V-X[i]. 4);
RMS = RS8p/(Dimensions[datax][[1]]-i-1);

TNV81p = Inverse|
1-Xop[i]\| Transp ose] Inverse[ (X[i]\| Transpose] X[i]+
Xop[i] Xop[i]\[Transp ose])]. Xop[i]l,

Dol i=k;

Print["i=", i, " max", NMaximize] {EXPR[[1]],-1 <=t<=1},1] ];

ge =PIot[EXPR[[1]], {t.-1, 1}]; g1 = ListPlot[data];

g2 =Plof{Xop[i]\[Transpose].3, {t.-1, 1}];
Print[Xop[i]\[Transpose].3];

asd :=NMaximizel {EXPR][1]],-1 <=t <=1}, t] [[2]][[1]];
Print{"RMS=", RMS]; t =t /. asd; Print["LP=", LP]; Print[Show[gg]];
Print[Show[g1, g2, PlotRange-> All]]; t =, {k, 0, 5}]
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