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Abstract: Volatility forecasting plays an important role in derivatives pricing, risk management and securities
valuation. As a traditional parametric model, GARCH can’t forecast financial volatility well. To improve the
forecasting accuracy and the modeling speed of GARCH model, this study proposed a hybrid forecasting model
for stock volatility forecasting, in which Least squares support vector regression (LSSVR), combining with
stochastic inertia weight PSO (STWPS0), is proposed to GARCH model. First, LSSVR was used to forecast
financial volatility under the GARCH framework. Then, the STWPSO algorithm was adopted to obtain the
optimal hyper-parameters needed m the LSSVR model. An empirical research was performed to illustrate the
effectiveness of the proposed method. Empirical results from four lugh frequency stock indices returns in China
stock market indicate that the proposed model provides improvement in volatility forecasting performance. The
values of HRMSE, HMAE, LI and LINEX of the proposed model are obviously smaller than those of the other
two models: LSSVR-GARCH-CV and GARCH. The searching time for the optimal hyper-parameters of the
LSSVR medel by SIWPSO 1s much shorter than that under 10-fold CV method. Therefore, the proposed model
is an effective approach for forecasting stock volatility.
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INTRODUCTION

The forecasting of volatility mn financial time
series has been widely studied by scholars for many
vears. Since Engle (1982) and Bollerslev (1986)
developed Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) model, it has been
recognized that GARCH model and its various
extensions are effective methods for volatility forecasting.
To further improve the forecasting performance of the
GARCH model, Artificial Neural Network (ANN) was
applied to GARCH model for volatility forecasting
(Schittenkopt et al., 2000, Tseng et al., 2008). Due to
the flexibility of ANN to approximate the nonlinear
relationship between past return and future volatility,
ANN-based GARCH model outperforms the traditional
parametric GARCH model in volatility forecasting.
However, the traditional ANN also suffers from itself
weakness such as getting trapping into multiple local
optima, the curse of dimensionality and over-fitting.

Support Vector Machines (SVM), based on statistical
learning theory (Vapnik, 1995), emerged as an effective

method for financial time series forecasting. SVM
implements the Structural Risk Minimization (SRM)
prnciple which can theoretically obtain better forecasting
performance than the traditional ANN. The applications
of SVM to GARCH model for volatility forecasting have
shown significant reduction i forecasting errors
(Tang et al, 2009, Gavrishchaka and Banerjee, 2006;
Chen et al., 2010).

Least Squares Support Vector Machines (LSSVM) is
a modified version of SVM. Different from SVM, LSSVM
gives the solution by a linear system instead of a
quadratic  programming problem  (Suykens and
Vandewalle, 1999) which decreases the complexity of
calculation and raises the learning rate (Zhang, 2012;
Zhang and Li, 2012). Least Squares Support Vector
Regression (LSSVR) 1s another form of LSSVM for
regression problem and has been successfully applied to
the volatility forecasting (Ou and Wang, 2010; Geng et al.,
2013). The selection of hyper-parameters is important in
the forecasting performance of LSSVR. Cross validation
is the common method for selecting the hyper-parameters
of LSSVR. As a grid searching method, cross validation

Corresponding Author: Li-Yan Geng, School of Economics and Management, Shijiazhuang Tiedao University, Shijiazhuang,

050043, China

5132



J. Applied Sci., 13 (22): 5132-5137, 2013

method could cause large amount workload and the
hyper-parameters obtained may not be the best. That will
have 1ill influence on forecasting accuracy. Stochastic
Inertia Weight Particle Swarm Optimization (SIWPSO)
algorithm is an improved PSO algorithm. In STWPSO, the
inertia weight is randomly selected based on a uniform
distribution in a certain range which improves the search
precision of the algorithm.

The objective of this study is to construct LISVR
based GARCH model with STWPSO algorithm. Using data
of China stock market, the performance of this method
was evaluated by comparing it with two models: LSSVR
based GARCIH model with cross validation method and
GARCH model.

MATERIALS AND METHODS

GARCH model: Let y, be a time-series of bounded
variance (e.g., retums on an index) and @, be the
mformation set of all information up to time t-1. Then a
typical GARCH (1, 1) model for the time series y, takes the
form:

v, —eh, z|D~iid0,D)
hi =x+ 8y, +nhi, (1)
t=12,..T

where, €, is a series of independent, identically distributed
random variables with zero mean and unit variance. And
h? is conditional variance. It can be seen from the
definition in Eq. 1 that the conditional variance h’ is a
stochastic process expressed as a linear function of the
last period of conditional variance, h’, | and the last period
of squared observation, v, ,. Parameters: x, 8 and 7 are
real parameters and the conditions: k>0, $=0, 1=0 are
important to guarantee that the process h’, remains
positive. The sum, &+1, is called the persistence
parameter. If 8+n<1, the process y, is stationary.

Least squares support vector regression: L3SVR applies
a squared loss function instead of the traditional
quadratic programming method In the primal weight
space, the LSSVR 13 formulated as:

Min yime)= 1;me+ %yi € 2)
i=1
Subject to the equality constrains:
8 = ol p®) +b+e, (3)

where, 1= 1, 2,... .n, w is weight vector and b is bias term;

e, is the error variable and vy is the regularization
parameter; B,cR? and 6 eR are the input vector and
corresponding output variable, respectively. A set of
nonlinear transformations @(0,) allow LSSVR to work in a
linear space.

The lagrangian function is constructed to solve the
above optimization problem. According to Karush-Kuhn-
Tucker condition, the following linear equations can be

obtained as:
© atu)al @

where, a=[o, 0., ", 7=[8,.8,,...0,T, I is an identity
matrix withn orders and 1 = [1,...,]". Kernel function matrix
€2 has the elements with the form ©Q, = ¢(6,)" ¢(6) =K (8,,6)
fori1=1, 2,..., n. Fmally, the LSSVR model becomes:

8= aK(,8)+b (5)

i=]

where, a(i = 1, 2,..., n) are Lagrange multipliers and
K({B, 6) is the kernel function satisfying the Mercer’s
condition.

LSSVR-based GARCH model: The traditional GARCH
model is usually estimated by the maximum likelihood
estimation (MLE) which requires specified assumptions
distribution of the data beforehand. However, it 1s difficult
to specific the function form and distribution of the data
accurately.

Theoretically, LSSVR can flexibly approximate any
continuous and nonlinear system well, without a priori
distributional assumptions about the data. Motivated by
this characteristic, LSSVR 1s applied to GARCH model and
LSSVR-based GARCH (LSSVR-GARCH) model 1s
expressed as follows:

hf = f(hf—l B yg—l) (6)
where, h? 1s the output variables and [h},,y],] 1s the mnput
variables. Nonlinear function relationship f() is built by
LSSVR through the training samples. From Eq. 5 and 6, the

LSSVR-GARCH meodel for one-step-ahead volatility
forecasting 1s obtamned as:

he, =S o Kih® h?)+b (7
t=1

Both h? and [hZ,,¥?,] must be known first in order to
establish and train the LSSVR-GARCH model. Here, h} is
reflected as:
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1
=

(Vi vh + vty t i) &)

The function which satisfies the Mercer’s condition
can be selected as kemel function n Eq. 7. In this study,
RBF 1s considered because of the high nonlinear feature
existed 1n the volatility series. The RBF kernel function
has the following form:

K0, hf)=exp(— || h* ~h? |? /267) &)

where ¢° is the kernel parameter. Consequently, according
to BEq. 4 and 9, two hyper-parameters, (v, 0%), need to be
selected appropriately in LSSVR model beforehand.

Parameters optimization of LSSVR by SIWPSO:
The SIWPSO algorithm 1s applied to optinize the
hyper-parameters (v, 0°) in order to improve the forecast
acouracy of LSSVR-GARCH model. The inertia weight of
the SIWPSO 1s a series of random numbers which follows
a certain distribution. By changing the inertia weight, the
global and local search capacities are dynamically
adjusted. According to (Hu and Zeng, 2006), the formula
of the stochastic inertia weight is:

{W:]J.Jr A-Var(0,1) (10)
1= i, + & (e — Hinin)

where, p and A are the mean and variance of the inertial
welight, W, and p are the maximum and mmimum
average value of the inertial weight, respectively. And
Var(0,1) is the random nmumber followed by normal
distribution m the range [0,1]. And Var(0,1) 13 the random
number in the range [0,1].

The detailed procedures of optimizing the
hyper-parameters (v, ¢°) of LSSVR-GARCH by STWPSO
algorithm (LSSVR-GARCH-SIWPSO) for forecasting
volatility are given below.

Step 1: Data preprocessing. The whole dataset are
mutially normalized using the mean and standard
deviation of each variable

Step 2: Particle swarm initialization. Generate initial M
sets of particles which consist of the hyper-
parameters (y, 6°). Set the parameters including
the maximum and minimum average value of the
inertia weight, the variance of the inertia weight,
the mnumber of maximal iterations and
acceleration coefficients

Step 3: Fitness function definition. The fitness function

1s forecasting error of the model, defined as:

: 14 2 [252
Fitness == -h (11)
itness 12 (y, —-h;)

t=1

where, y* represents the actual volatility and h?
represents the forecasted wvolatility. And 1
represents the number of traimng samples
Step 4: Particles evolutionary. Calculate each particle’s
fitness values according to (11) and take the
particle with the minimal fitness values in the
swarin as the best position. The inertia weight w
is updated according to (10)
Stop criterion judgment. If the number of maximal
iterations is reached, the evolutionary process is
terminated. By this, the algorithm gives the
optimal hyper-parameters (y*, 0°*), otherwise,
k =k+1, go back to step 3
Step 6: LSSVR establishment and forecasting. LSSVR
model 13 established with the obtained optimal
hyper-parameters and is used to forecasting
volatility. Then, the forecasted volatility 1s
transformed into the original volatility forecasts

Step 5:

RESULTS AND DISCUSSION

Data description: The data examined in the empirical
research consist of one-minute high frequency close price
on December 3, 2007 including Shanghai Composite Index
(SHCT), Shanghai Stock Exchange 180 Index (SH180),
HuShen300 Index (HS300) and A Share Index (ASI). These
high frequency stock indices p,are transformed into high
frequency returns y, by the following expression:

y, =100x (logp, —logp,,) (12)

There are 240 data samples for each return series.
Each whole data sample is divided into two subsets: initial
170 samples are used to establish and train the model and
the remaining 70 samples for forecasting volatility.
Table 1 Lists the descriptive statistics for four stock
indices returns.

Table 1: Descriptive statistics of the one-minute stock index returns

Statistics SHCI SH180 HE8300 ASI

Mean 0.0030 0.0056 0.0052 0.0029
Median 0.0024 -0.0008 0.0032 0.0011
Max 0.2162 0.1869 0.1778 0.2166
Min -0.3703 -0.2384 -0.2628 -0.3729
S.D. 0.0647 0.0590 0.0558 0.0648
Skewness -0.3463 0.2209 0.0603 -0.3649
Kurtosis 8.1238 4.2342 5.1505 8.2359
JI-B 267.3300% 17.1828% 46.3922% 2794748*
Q12 66.0277* 97.9864 " 82.4480* 63.463%

*Denotes significantly at the 5% level. 2. Max, Min denote Maxirmum and
Minimurn, respectively; SD denotes Standard deviation. 5. J-B is the
Jarque-Bera normality test; Q?(12) is the Ljung-Box Q test for 12th order
serial correlation of the squared returns
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Table 2: HRMSE, HMAE, LI, LINEX and TIME of cut-of-sample volatility forecasts by three models

Indices HRMSE HMAE LL LINEX(x10%) TIME(s)
SHCI LSSVR-GARCH-SIWPSO 31.9370 10.7485 3.5745 6.0162 6.1719
LSSVR-GARCH-CV 3465113 12.0064 3.7492 6.3361 7182.9063
GARCH 34.2603 13.6702 42293 6.0645 20.8750
SH180 LSSVR-GARCH-SIWPS-O 2684733 67.7681 6.5027 18.4096 6.3900
LSSVR-GARCH-CV 268.6599 65.8251 0.3476 18.5860 7846.7188
GARCH 571.4139 1004464 6.8528 19.2080 19.8906
HS300 LSSVR-GARCH-SIWPSO 300.6154 46.1326 4.1398 8.0564 6.5156
LSSVR-GARCH-CV 313.7218 48.6043 4.2626 8.8149 8726.4688
GARCH 840.7540 109.0940 4.4379 72242 19.3594
ASI LSSVR-GARCH-SIWPSO 251163 9.1282 3.3800 59327 6.8281
LSSVR-GARCH-CV 27.6935 94712 34471 6.3424 7866.9219
GARCH 27.8200 11.5327 3.9469 6.1234 21.7500
. . \ .
. The positive return Tlearts with nearly zero :.standard HRMSE [N"Z (lfﬁf/yf)z} (13)
deviation are presented in the four return series. The —
distributions of SHCT and ASI are negatively biased
(Skewness<0) and the distribution of SH180 and HS300 I
. . . HMAE = N3 [l -hi/y? (14)
are positively biased (Skewness>0). The kurtosis values o
of the four return series are all bigger than 3 which
suggest all return series have fat-tailed distributions. v, 2 15
For four return series, the I-B normality tests reject LL:N_IZ[ln(hf)_ln(yb} (1%
, jec

the original normality hypothesis. The statistics Q%(12)
show significant linear serial correlation in the squared
returns.

Empirical results: In L.SSVR-GARCH-5TWPSO model, the
parameters of the SIWPSO algorithm are set as follows:
M=10, P, =09, ;. =01, ¢,=¢,= 2, Land k,, = 30. The
hyper-parameters of LSSVR are simulated contimuously
by the STWPSO algorithm for ten times and the obtained
optimal hyper-parameters are used to establish the
GARCH-LSSVR model. Then the well tramned model 1s
used to one-step-ahead forecast the volatility of the four
stock returns.

The volatility 1s also  forecasted using
LSSVR-GARCH-CV model and GARCH model. The
out-of-sample volatility forecasting results of these
two models are compared with those of the
LSSVR-GARCH-SIWPSO model. In LSSVR-GARCH-CV
model, the LSSVR is also used to estimate the parameters
of GARCH model, but the hyper-parameters m LSSVR are
selected by the 10-fold cross validation (10-fold CV)
method. In GARCH model, the parameters are estimated
by MLE, in which the stock mdices returns are assumed
to follow the normal distribution.

The forecasting performance of the three models 1s
evaluated by four statistical criteria. These are the
heteroscedasticity adjusted root mean squared error
(HRMSE), the mean absolute error (HMAE), the
logarithmic error statistic (I.1.) and the linear-exponential
(LINEX). These statistical criteria are expressed as
follows:

t=1

LINEX=N"§: {exp[a(flf - yf)}— ath’ = y-1) (16)

=1

where, h? is the volatility forecasts of different maodels
and v, is the realized volatility measured by the squared
retumns. And N is the number of the volatility forecasts.
The forecasting performance 1s better when the above
criterion value is smaller. Tn addition, the searching time
for the optimal hyper-parameters (TIME) 18 recorded to
evaluate the convergence speed of the three models. The
results are presented in Table 2.

Results discussion: According to Table 2, with the
exclusion of LINEX of HS300, in all the four indices
LSSVR-GARCH-SIWPSO model has the smallest values
of HRMSE, HMAE and LL among the three models. As
for LINEX of HS300, the second-smallest value is founded
in the LSSVR-GARCH-STWPS0O model and the smallest
value 1s m the GARCH model. This shows that as a whole,
L3SVR-GARCH-SIWPSO model performs better than the
two other models on volatility forecasting. Tt is clear
from TIME that the searching time for the optimal
hyper-parameters of LSSVR using SIWPSO 1s obviously
shorter than that of the 10-fold CV method. This mdicates
that STWPSO is superior to the cross validation method in
terms of parameter estimation efficiency.

Ou and Wang (2010) combined LSSVM with
GARCH-type models as a hybrid method to forecast
stock volatility and found the improved performances
of the hybrid method. But the proposed method is a
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Fig. 1(a-d). Comparison of three stock index volatility forecasts for different models. (a) Comparison of SHCT stock index
volatility forecasts for three models, (b) Comparison of SH180 stock mdex volatility forecasts for three
models, (¢) Comparison of HS300 stock index volatility forecasts for three models and (d) Comparison of ASI

stock mdex volatility forecasts for three models

semi-parametric method and needs to estimate more
parameters than LSSVR-GARCH-SIWP SO model which
increases the computation complexity.

Figure la-d give the graphs of the one-step-ahead
volatility forecasts from the three models for four
stock indices. These figures show that LSSVR-GARCH-
SIWPSO model forecasts the up change tendency of the
realized volatility well and captures the general up peak in
realized volatility better.

CONCLUSION

This study has forecasted the volatility of GARCH
model based on LSSVR with SIWPSO algorithm. As
demonstrated in the empirical research, the proposed
model forecasts the volatility of four high frequency stock
indices more accurately than the LSSVR-GARCH-CV
model and the GARCH model. Furthermore, the
convergence speed of the STIWPSO to LISVR-GARCH
model is much faster than that of the 10-fold CV
method. In this study, the RBF function has been
selected as the kermel function of LSSVR model

and the SIWPSO has been used to optimize the
parameters of LSSVR-GARCH model. To further
improve the forecasting accuracy of the LSSVR-GARCH
model, further works can focus on selecting other
nonlinear kemels as the kemel function of LSSVR
and using other improved intelligent optimization
algorithms to adjust the optimal parameters of
LSSVR-GARCH model.
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