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Simple Average for Linear Combined Forecasting Weights Method
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Abstract: This algorithm explaing the time series forecasting as a measure. At the time, the optimal combined
forecasting using each method can be defined as the measurement of the actual strike after the true value
problem. It theoretical correlation coefficient estimation bias affects forecasting values. The optimal weights
of linear combined forecasting were deduced theoretically. Tt can be proved that the simple average is the
superior weights method of the linear combined forecasting. Particularly, based on robust statistical theory, the
superiority of the simple average is proved by mathematical deduction and numerical test.
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INTRODUCTION

The combined forecasting more and more attention
in recent years. The combined forecasting is appropriate
combination of different forecasting methods for
utilization of various forecasting methods to provide
mformation, as much as possible to improve prediction
accuracy. The basic idea is to first use of a plurality of
specific single model to predict and get their predictions
and then combine the results of these projections a better
result. The simple average performed well compared to
models based on past performance data and performance
improved in general as more forecasts were included in
the consensus (Clemen and Winkler, 1999). So far, the
linear combined forecasting weight optimization 1s a hot
spot theory being studied.

COMBINED FORECASTING

Actual complex time series forecasting is a difficult
problem. Complex combined forecasting method is the
actual time series forecasting a new stage of development
(Hibon and Evgeniou, 2005; Eklund and Karlsson, 2007).
The linear combined forecasting can be expressed as.

For the time series, t =1, 2,..., N methods using the
predicted results:

T (1)

ssssss

Here, y; is the i-th test phase forecasting method T a
predictive value. €, is residual that mean value is 0., The
correlation of any two residuals between €, and ¢,
coeffictent p; # 0,1,7=1,2,..., N, 1 #].

In general, it does not assume that €, is normally
distributed. €, obey arbitrary distribution. Tt becauses that

it is difficult to determine the specific distribution pattern
of the noise an forecasting error. Thought assumed to
follow a normal distribution 1s reascnable, when the T 1s
larger.

The results of the linear combined forecasting is:

Yo=ky, Ry, otk Y 0512, T 2

The optimal weights of linear combined forecasting
became find {k,, k,, -, ky}. that& of the:

V¥,=x,+8,t=1,2,...,T 3)

1s in the mimmum variance.

The €; is the residual of a forecasting result. Its mean
may not 0, when the linear combined forecasting 1s biased.
In this case, it can analyze the historical data to estimate
the residual mean of g, and then to be corrected. The
variance of the residual g, generally consists of two parts.
One part is the noise in the historical data which can’t
been forecasted. Another part comes from the forecasting
of the defect. Any kind of forecasting method has its own
shortcomings, a single method to predict will cause
additional errors. The combined forecasting 1s powerless
for the first part factor and it forms predicted limits. It can
improve the forecasting methods and use of combined
forecasting which can significantly reduce the forecasting
error.

IMPACT FACTORS OF THE COMBINED
FORECASTING

The main factors affecting combined forecasting
accuracy rate 1s.
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¢ Sample size is limited Table 1 shows the confidence
mtervals for the population parameter estimate of the
normal distribution. Table 2 shows the confidence
mterval for robust parameter estimation. They show
that parameter estimates and confidence mntervals are
directly related to the sample size n. The length of the
confidence interval is inversely proportional to «n

The length of historical data big impacts

forecasting accuracy and forecasting reliability which
are based on empirical. Although, theoretically it can
easily obtain a sufficiently long historical data,
however, the actual history of complex systems data
length 1s limited. It 1s because of the changing nature
of such data. Old historical and present situation may
have occurred behavioral changes in the nature.
They have not been used.

* It unknowns probability distribution function of the
forecasting error. In general, it use the normal

sample statistical
methods. At this point, the sample quality is very
good. But many times, the sample distribution can
only approximate a normal distribution, even far away
from the distribution. Under these
circumstances, the robustness of the statistical
methods lost and traditional statistical methods can’t
do anything. Box and Tukey illustrate some common
estimation and testing became so bad m some
approximation model. At this point, robust estimators
are not precise enough (Clemen and Winkler, 1999)

*  Smples contained anomalous data. Since, the large

distribution formula derived

normal

number of tests, it 1s difficult to avoid completely the
individual neglect. Hampel noted that the actual data
contained in 10% of the abnormal data is a common

Table 1: Confidence intervals for the population parameter estimate of the
normal distribution
Known parameters

Estimated parameters Confidence intervals

s —

ey (o2
B g X-u,—=,X+u,—&—=
*n Vo
X-t, 5 LXK+t Sy
n-1 n-1
2 2
LE R
2 2
n X ) F(X W
f;,(z xf-m,'z
Table 2: Confidence interval for robust parameter estimation
Location Scale estimator Confidence interval
M dy _ t(d) + t(de)
(1.075+/n) (1.075+/n)
. ton Sy S
T S R,*%IN&

thing. Tt makes some classical statistical analysis
become worthless, who contain a small amount of
data outliers. It can lead to erroneous statistical
conclusions. It can use robust statistical estimator to
reduce the adverse effects of abnormal data. One
way 1s to design an effective forecasting method to
discover outliers mn the data. Then put them removed.
Another method is to design a method for the
statistical estimation of the amount which can reduce
the adverse effects of the abnormal sample data
statistics estimation

OPTIMAL WEIGHTS OF LINEAR
COMBINED FORECASTING

In general, time series forecasting is divided into
three phases. First, predictive equation should be build by
the sufficient historical data. Then, the forecast data tests
and predicted parity forecasting equation. If the
forecasting method is validated pass, it can confirm that
the forecasting equation is available. Tt is combined
forecasting that the combined forecasting 1s a variety of
predicted values accordng to the Eq. 2 weighted
synthesis and finally let the Eq. 3 in the minimum variance
of & Then, the combined forecasting uses Eq. 2 to predict
the future (Tsangari, 2007; Liang et al., 2006, Greer, 2005).

Thus seen, the problem can be interpreted as
predictive measurement problems. At the time, the optimal
combined forecasting using each method can be defined
as the measurement of the actual strike after the true value
problem. It can study the forecasting problem, by using of
statistical methods for analysis of experimental error.
Theorem 1 1s optimal weights given formula.

Theorem 1: Tt assumes that using N kinds of forecasting
methods. Variance of forecasting varies 1s o7, i=12,---,N.
The correlation coefficient of the forecasting is p;. The
optimal combined forecasting coefficients is:

Ky = (b +Dby; ++ by )by + by +-+Dyy)

+(by + by + -+ by Y+ + by by, + o+ by T

kz = (b21 +b22 +'"+b2N)[(b11 +b12 +'"+b1N)

F(by by -+ By d ot (b by + Dy ()

kN = (bm Jrsz + '"+bNN)[(b11 +b12 Jr'"erm)

+(by + by + -+ by Y+ + by by, + o+ by T

It is unbiased and variance is mimimal b; is the
elements of the:
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bll b12 bln
po| b Pm b
bnl bn2 bm
2612 ZPIZGIGZ 2plNGlGN i
A | PPasio2 25 2Py 0.0y
2pyooy 2pyoioy 20y

Let residuals ¢ o g, 15 the mean of O and
variance 18 of, o2,..., y. Lhus, the forecasting residuals
for each forecasting correlation coefficient is p.1 # J.
ki, k..., ky is weights of the linear combined of the
forecasting. The mean of linear combined of the
forecasting is:

It 18 0. Variance 1s:

o= Zn: kio!+ 23 > kkpoo,
1

i<j

The optimal weights of linear combined forecasting
is k +k,+-—-+k, =1 and:

V=kic +kici + -+ kloi + 2kk,p,0.0, + (5)
2k kypps0,6; + -+ an—lknp(n—l)ncn—ﬁn)

1s the smallest.
Putting the lagrange multiplier into the Eq. 5, it get
that:

_ 2.2 3.2, 1 2
V=kio; +kio; + -+ k.o, + 2k k,p, 0.0, +

2k kspiso0s + oo+ an—lknp(n—l)no-n—lcn)

1s the smallest:

g(_vz 2,57 + 2k, p,0,0; + -+ 2K, pLG8, ~ A= 0

1

% =2k,ck + 2kp,0,0, +---+ 2k p, 5,0, —A=0
2

:.jk_v = anci + 2k1 Pin0:10, + F 2kn-1 Pen13a 0100 — r=0

n

Tt can be shown that:
2 2p,0,0, 2p,0,0, k, A
2py3 0,0, 25} o 2pyoi0, N k, |
2p,o0, 2p,o0, 20, k, A

Let:
2(512 2p;0,0; 2p,0,0,
A 2p,0,0, 2'32 2p,,0,0,
zplncl G, 2p2n02 G, 20123
Suppose:
2612 ZPIZGIGZ 2plﬂclcrn
A= 2p;6,0, 20; 2py50,
2p,0.0, 2p,0,0, 2a,
is not Singular Matrix, then:
bll b12 bln
B— b21 b22 b2n
bnl an bnn
1s the mverse matrix of A.
Then:
k1 b11 b12 bm ps
ME (©)
kn bnl bn2 bm 2

1s the optimal weights of linear combined forecasting.
Putting k +k,+--—+k; =1 into the Eq. 6, it gets that
theorem 1.
If only two forecasting methods consist of combined
forecasting, it get that:

2
G ~ PS5,
p 7
03— 2p;0,6; + O] (7

2
G~ PS5

k=

2 7 2
o3 —2p;0,0; + 0

1s the optimal weights of linear combined forecasting.

In Bates and Granger (1969) gives the simplest case.
This study gives combined forecasting formulas
consisting of N forecasting methods.

Corollary 1: When correlation coefficient of every
residuals (g, €;) 1s p; = 0, 1 # j, forecast errors are
independent. Then, the weights of linear combined
forecasting 1s:

2
TP 1/20; 2 (8)
/o, +1/c; +-+ /oy

i

Corollary 2: When correlation coefficient of every
residuals (g, €) Is p, = 0, 1+ j, and every variance is
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equal, (¢! = oF = --- = o1}, forecast errors are independent.
Then, the weights of linear combined forecasting is:

T ©)
N

In particular, the above proof 1s not required for any
distribution are established. It gives the optumal weights
of linear combining where the residuals of each
forecasting method are not independent. The simple
average 13 the optimal weights when the residuals are
mndependent and identical.

OPTIMALITY OF THE SIMPLE AVERAGE

The sample size 1s limited. It unknowns the
probability distribution function of the forecasting error.
The smples contained anomalous data. These cases give
us unable to confirm the sample variance and correlation
coefficient. of equal Eq. 4 1s rough and not credible.
Therefore, the optimal weights of the linear combined

forecasting relying on these two parameters are not
accurate. The sample average do not need 0% and p;. It
can avoid this limitation, so its effect 1s often better than
other weight calculation method (Koning et al., 2005;
Makridakis and Hibon, 2000, De Menezes et al., 2000).
When correlation coefficient of every residuals
(g, &) 18 p; = 0,1 # j and every variance is not equal 0.
Putting two kinds of forecasting mto the Eq. 4, it gets that:

it?

ﬂz:[ﬂadq+§ﬁd%JLJ{§&dq+é§dUJ1;

v do, do, v do, do, v
-2c,0; 2oio, 20,07 20ia
= o, + do + = do, + 51 2-do
[q+@ S M e e
(10)

Equal Eq. 10 shows that o, and o, affect the
contained anomalous values.

Figure 1 shows simulation figure of the d¥/y, when o,
and 0, change. Simulation results from two types of time
series forecasting which are AR model and Support
Vector Machine model. g, = 24.4478 and 0, = 28.9587.

109 @ 49w
5 2 1
0 0
w4
5 2
-10 T T T T -4 T T T T
20 =
- - d
1070 (d
05 10 A
0.0 01,
0.5 -10 4
5
ho ' ' ' ' * 1Io 7'0 3'0 4lo
10 20 30 40 -
. Time
Time

Fig. 1(a-d): Simulation figure of the dyy (a) = 0.1,=-0.2,(b) = 0.1, =-0.2, (¢) = 0.01, = -0.02 and (d) = 0.3, = -0.2, (b)
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When correlation coefficient of every residuals
(& g;)18 p; = 0, 1 # J, and every variance is not equal 0.

Putting two kinds of forecasting into the Eq. 4.
It gets:

%—&ﬂ—klds L ds, + Tk, drlzoy1

y eﬂs ﬂs2 ﬂru .34
+gabds +Lk2ds + Tk, dr, 0y2

S, ﬂ52 ﬂru ﬂy
2 3
r125152+r1252' 25152 +251sz' 25,53 - 1138,
2 2 1M1 2 2
S;-2r,8;S,+S; S;- 2r,8,S,+8S;

=(

ss ss 2s,82-r,8%5,- 1,83
1°2 12122 12°2
+7Zyldr )+(

2 2
2r ,S$.S,+s; S;-2r,S,;S,+S;

rss+rs-ZSs ss ss
1 Zyzds + zyzdrlz)
- 2r,8,5,+s? -,S;S,+s;

@)

y20s,

v do,

(1)
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Fig. 2(a-f): Sunulation figure of the dyy (a)=0.1,

40

Equal Eq. 11 shows that o,, 0, and p,, affect the
contained anomalous values.

Figure 2 shows sunulation figure of the d¥/y, when
0., 0, and p,; change. Simulation results from two types of
time series forecasting which are AR model and Support
Vector Machine model. o, =24.4478, 0, = 289587 and
p:; = 0.7. Figure 2 shows that the contained forecasting
value dramatic changes, when 0% and p, change. Then,
the contained forecasting value is credible.

The error of the sample average is:

.
=>4 t=12, T
IS

Variance decreases with the combined forecasting
method to participate in growing the number. This

20

(b)
10 -
S
m .
3 0 /\ /\[\/\ \\/ \‘/v . \/\\ /
-10 1 /
-20 T T T T
60 1a)
40
£ 20
m
ORIy /M A Aﬁw
20 . . . .
57

10 20 30 40
Time

=01,=01,=-02,(0)=05,=01,=01,=-02,(c)=07,=01,=0.1,

=.0.02,(d)=09,=01,=01,=-02,(e)=0.7,=03,=01,=-02 and (d) = 0.7, = 0.1, = 0.0, = 0.0
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includes the white noise forecasting accuracy limits. The
combined forecasting method reduces the individual
forecasting additional error, but can’t improve the
formation of white noise error.

CONCLUSION

This study explains the tune series forecasting as a
measure. At the time, the optimal combined forecasting
using each method can be defined as the measurement of
the actual strike after the true value problem. Putting
result of the mathematical statistician Dickinson mto the
time series, it 3 types optimal weights of linear combined
forecasting. Tt theoretical solution to the optimal weights
of linear combined forecasting and theoretical analysis of
variance and correlation coefficient estimation bias affect
forecasting values. Tt proves that the Simple Average is
the Superior Weights Method of Linear Combined
Forecasting.
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