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Analysis of Guided Waves in Adhesively Bonded Composite Structures

Zhang Hong
School of Science, Chang’an University, Xi’an, 710064, China

Abstract: Characteristics of guided wave in adhesively bonded composite structures are studied n this paper.

Hamilton’s principle and semi-analytical fimite element method are combined to formulate equations of motion
and dispersion. Material property i the composite 1s expressed in the global coordinate system through
rotation matrix. Tn numerical calculation, a 16 layer adhesively bonded composites is investigated. Results
showed that phase velocity dispersion curves decreased slightly when states of adhesive layer changing from
properly bonded to disbond in plate model and variation in pipe model 1s noticeable.
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INTRODUCTION

Adhesively bonded composite structures have been
used widely in aerospace and automotive industries as a
direct alternative to riveting. Tt offers several benefits for
the joining of materials: (1) The ability to uniformly
distribute loads across the entire joint area, (2) The ability
to join thin or thick materials of any shape, (3) The ability
to attenuate mechanical vibrations and sound, (4) The
ability to mimimize or prevent galvanic corrosion between
dissimilar materials due to their low electrical conductivity,
(5) Excellent ability to resist fatigue and cyclic loads, (6)
Much faster and more cost-effective than mechanical
method. But the quality assessment of adhesively bonded
components still remains a long-standing challenge in the
field of nondestructive technology NDT. Guided waves
mspection of adhesively bonded structures has gone
through decades of improvement and has proven to be a
very powerful method.

Matt et al. (2005) and Matt (2007) presented the
monitoring of adhesively bonded joints by ultrasonic
guided waves and examied the wing skin-to-spar bonds
of unmanned aerial vehicles, the assessment of bond state
15 based on monitoring the strength of transmission
through the jomts of selected gwded modes.
D1 Scalea et al (2004) studied the propagation of
ultrasonic gmded waves in adhesively bonded lap-shear
joints by using the lowest-order, antisymmetric mode.
Lowe et al. (2000) investigated the transmission of Lamb
waves across adhesively bonded lap joints using finite
element method by considering three modes for excitation
and reception, which provided a basis for the selection of
modes for NDE of the bond region. Allin et al. (2003)
described a robust technique for the detection of
disbands, based on the fundamental through-thickness

resonance frequency of a jomt of automotive
components. Higging (2000) presented details and history
of the mam adhesives used in the construction of British
Aerospace and predecessors commercial aircraft with
some details of adhesive bonding used by other aircraft
manufacturers. Brotherhood et al. (2003) studied the
detectability of diy contact kissing bonds in adhesive
joints using three ultrasonic nspection techniques.
Duflo et al. (2007) studied the characterization of defects
in the bonding of two carbon epoxy composite plates
using Lamb waves. Seifried et al (2002) developed a
quantitative understanding of the propagation of guided
bonded
components by using analytical and computational
models. Tang (1999) studied ultrasonic techniques to

nondestructively evaluate adhesive bond degradation by

Lamb waves in multi-layered, adhesive

introduction of an external factor which pulls the adhesive
bond in the nonlnear range, simultaneously with the
application of an ultrasonic technique. Wang et al. (2009)
studied wave propagation along the steel rebar in the
concrete where scalar damage parameters characterizing
changes in the interface are incorporated into the
formulation of the spectral fimite element for damage
detection of reinforced concrete structures. Su et al.
(2006) provided a comprehensive review on the state of
the art of Lamb wave-based damaged identification
approaches for composite structures.

The characteristics of guided waves propagation in
adhesively bonded composite to composite structures by
using semi-analytical finite element method and
Hamilton’s principle. A 16 layer adhesive bonded model
1s used for both plate and pipe structures in the numerical
calculation. The phase velocity dispersions and wave
structures are presented.
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Fig. 1: Composite-to-composite adhesively bonded plate
model

ADHESIVELY BONDED COMPOSITE PLATE

Problem statement: The wave propagates along direction
x, with wave number k and frequency w. The cross
section lies m the x,-x; plane, as shown m Fig. 1. The
displacement, stress and strain field components at each
point of the waveguide are expressed by:

u= [ul u u, ]T 1

T
8= [611 Oy Oy T Op cr12] (2)
e= [811 £y Ey By B gy ]T (3)

The constitutive relations at a point are given by:
s =Ce 4

where, C is stiffness matrix.

Guided wave equations of motion are formulated by
using Hamilton’s principle. And the variation of the
Hamiltoman of the wave guide, which vamish at all
material pomts, 1s:

3H = _[; B — K)dt 5

where, @ is the strain energy and K is the kinetic energy.
The strain energy 1s given by:

d):lj e’ CedV (6)
2 v
The kinetic energy is given by:

_iiton 7
ngjvu pudv (7

v

Fig.2: Relationship between principle direction and the g
Lo bal direction in rectangular coordinate system

where, p 1s the mass density.
By substituting Eq. 6 and 7 mto Eq. 5, the Hamilton
formulation can be rewritten as follow:

J-: [J.v S(e")CedV + J.V S(u” )pﬁdV}dt “o )

Material property: In order to study guided wave
propagation, the elastic constants of all the layers must be
expressed in the global coordinate system (x,.x,,x,) . For
a composite material, this can be achieved through the
rotation of the stiffness matrix of each lamina:

C, =R,CR; &)

where, C, is the complex stiffness matrix in the global
direction of the laminate, C is the complex stiffness matrix
in the mdividual lamina’s principle directions, R, and R,
are the rotation matrices from the principle material
directions to the global laminate directions:

2 2 2 2

¢ g 0 0 2cs c E 0 0 o8
£ ¢ 00 0 —2cs & ¢ 00 —cs
R, = o 0 1 0 0 0 R, = 0 o 1 0 0
0 0 0 ¢ - 0 0 0 0 ¢ - 0
0 0 0 s ¢ 0 0 0 0 s 0
—cs ¢ 0 0 - 2cs 2es 0 0 0 of—¢g
(10)

where, ¢ = cos@ and s = sing. Here, ¢ is the angle of
rotation from lamina’s principle direction to the global
direction and the value of @ 13 positive when the rotation
1s counterclockwise, as shown n Fig. 2.

Safe method: The plate section is discretized in the
thickness diection x; as showed m Fig. 2, where
X;,,%; 5, %, are coordinates of nodes 1,2 and 3 along x,

direction, by a set of one-dimensional finite elements with
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quadratic shape functions and three nodes, with three
degrees of freedom per node. The displacement vector
can be approximated over the element domain as:

e

[ 3
ENJ(Xa)Ux,j
=L
2 k.
u® (X%, %;, )= ZNj(Xs)Ux,] giksen (113
=
3
ZNJ(X3)UK31
Lr J
= N{x, )q(e)ei(ermt)
where, N; (x,) is the shape functions:
N, 0 ¢ N, 0 0 N, 0 0
Nx)= 0 N, 0 0 N, o o N, o (12
0 0 N 0 0 N, 0 0 N,
X1
=[N, N, N, (13)
X33
1.,
N, :5(% -8
N, =(1-£%) (14)
1
N,=—(& +8)
2
u,..U,.. U, are the unknown nodal displacements in the

Xy, X,, X, directions:

‘*’—[UUUUUUUUUT
q“=|U,

x;1 %31 X2 %12 x32 3 %23 %33

(15)

The strain vector in the element can be represented
as a function of the nodal displacements:

d g a .
e(E) =L —+1, —+1L Nix (ejen(erm)
Tox, Tax, ok, () (16)

- ; (&) i(kx -0t)
=B, +ikB,)q "™

Where:

*1

(=Rl == =
- o o o O
S = D O D D
- o o o O
S S D O = D
oo = o o O
[==R = == R e -
[ R e = = e ]
o o O = o O

B,=L_N_,B,=L_N (17)

LIS N

and:

By considering the total elements in the thickness,
Hamuilton formulation becomes to:

i {QUV 8(eCYe PV + [ ! >p<e>a(e>d‘f]}dr _o(18)

where, m 15 the total number of elements 1 the thickness
direction and each elements represented a layer in the
composite laminates m the study, ¢ and p® are the
element’s stiffness matrix and mass density, respectively.

By substituting Eq. 16 into 6 and some algebraic
manipulation, yields:

j 6(ew)cmemdv
v +

(19)
- ﬁq“”J'! []3]‘(:;"]3l - 1kB:C:)Bl +ikB:Cf;JBz +1<’B:C;"B2 ]dxiqm
The element kinetic energy can be written as:
ST I P
jv (0™ pudv
(20)

- —mgﬁq(mj NTpNdx,q?
Then, substituting Eq. 19-20 into 18 yields:

n
i {U 5" [k + kK + KK — 0P g }dt _o (1)
T et

Where:
k= | [BICPB, Jix,
kY - j |B/C’B, ~BjCYB, fix, (22)
K :L [BICYB, dx,
m® :J'x I:NTP(E)N]C‘XE
Applying standard finite element assembling
procedures to Eq. 21:
j;“{SUT [K, +ikK, + K'K, o’ |Uldt =0 (23)

where, U 1s the global vector of unknown nodal
displacements:
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Fig. 3(a-c): SAFE model in adhesively bonded composite-to-composite plate

1000 v T ¥ T ¥ T T T T
~Results from reference (2)
=+ Results from this paper

000k ) .

R o 1
2
@
g
o

U 4000 1

2000} ) - ' c

0 s 1 N 1 N 1 N 1 s
0 20 40 60 80 100
Frequency (KHz)

Fig. 4 Comparison of phase velocity curves between
Matt (2007) and this paper for composite plate
bonded to the spar

K, =K K, =k Kk, =k M= Jm® (24
=1 e=1 e=l e=1

e:

Due to the arbitrariness of 8U, the following wave
equation is obtained:

(K, +ikK, + K’K, - oM [U=0 (25

where, U is the global vector of nodal displacement
components. The eigenvalue problem in Eq. 25 relates the
wavenumber k to the frequency w, one of them being
given and the other being the eigenvalue to be solved. If
k 18 given, Eq. 25 is a eigenvalue problem with m real
eigenvalues w’. If instead w is given, Eq. 25 is a
eigenvalue problem with 2 m eigenvalues k.

Numerical results: First, the numerical results are
compared with the previous works in Fig. 4. The phase
velocity dispersion results obtained from present work for
wave propagation analysis in [0/45/-45/0], plate bonded to

Fig. 5: Sixteen layer adhesively bonded composite plate
model and its stacking sequence

the spar with properly adhesive are compared with the
results from Matt (2007). Computations are carried out by
taking stiffness coefficients, geometric and physical
properties as
comparison performed in this figure shows that the
present results agreed well with those in Matt (2007).

Ther, a 16 layer adhesively bonded composite model
[(0°/45°/90°/—45),], 1s introduced as shown in Fig. 5. The
guided wave assumed propagation along the positive x,
direction which 1s the fiber direction of the first layer. The
material properties of composite and adhesively bonded
layer are presented in Matt (2007).

Figure 6 showed the phase velocity dispersion

comsidering m the reference. The

curves about three different adhesive ways: properly
bonded, poorly bonded and disbond. The result showed
that phase velocity curves are trended to two values and
the curves decreased gradually with the bonded situation
changing from properly to disbond.

Figure 7-9 presented effects of variation of adhesive layer
thickness to phase velocity dispersion curves for three
adhesive ways where, h, is the thickness of the adhesive
layer. The results showed that all the phase velocity
curves decreased when the adhesive thickness doubled.
Figs.10-12 showed the wave structures of three adhesive
bonded composite models in the thickness direction with
frequency 50KHz and different phase velocities. The
results showed that the amplitudes of phase velocity

around 5800 m sec ' are much smaller than around
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bonded model with variation of thickness of
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700 T T T T

6000

5000

4000f .

Cp(m sec'l)

30001 1
200 e 2h, 1

10008

{

0 i L L L i i L
20 40 60 80 100

Frequency (KHz)

Fig. 8: Phase wvelocity dispersion curves of poorly
bonded model with variation of thickness of
adhesive layer

7000 T T T v T v T

6000

5000

4000 i

Cp (m sec)

3000 N

T

—2h;
1000 F B

2000

20 40 60 80 100

Frequency (KHz)

Fig. 9: Phase velocity dispersion curves of disband model
with variation of thickness of adhesive layer

800 m sec™'. Fig. 13 showed the comparison of wave
structures of different adhesive ways with frequency
580KHz and phase velocity around 800 m sec™ in x,, x,, X,
directions. The amplitudes m the adhesive layer of
disbond way are closely zero values.

Adhesively bonded pipe: Consider guided wave
propagation along x, direction with wave number k and
frequency . Both outer and wmer surfaces of the pipe are
assumed to be traction free. The displacement, stress and
strain field components at each point of the wavegumde
are expressed by:

u= [ur U, o, JT (26)
s=[0, Oy Oy Oy Gy © ]T (27
e=[e, €0 S5 G s Sl (28)

The constitutive relations at a point are given by:
0=Ce (29)

Material property: As described in plate situation, the
elastic constants of all the layers in composite-to-
composite pipe must be expressed in the global
coordinate system (r, 8, x;). For a composite material, this
can be achieved through the rotation of the stiffness
matrix of each lamina. As showed in Fig. 15a, b, the
coordinate axes are labeled as x,, x,, x,’, %, to correspond
with the rectangular coordinate system. To describe the
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Fig. 10(a-c): Wave structures of properly bonded composite in the thickness direction
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Fig. 11(a-c): Wave structures of poorly bonded composite in the thickness direction
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Adhegive layer 0 1 0 0 0

2 2es 0 & & cs

R, 2 0 & & —cs

. R,= 2 R;= 2
Comosite 0 —Zcs 2cs -4
o 0 4} -5 0 0 0 0 -5
o 0 4} 0 0 0 0 c
e (30)

where, ¢ = cosp and s = sinp. Here, ¢ is the angle of
rotation from lamina’s principle direction to the global
direction and the value of @ is positive when the rotation
is counterclockwise.

(=}
(=1

[= e B o = =
(Lmo
in
o 0, 9,
2]
by |
| b
w8

[ B o T = R e R e R |
e [ s R e B ]

w N O O o O
[o= == R o= R e |

o

Fig. 14: Composite-to-composite adhesive bonded pipe
model

Safe method: The pipe is discretized along the radius r

0° throughout thickness of the cross-section and the
450 discretization is reduced to a line of element along the
90°. radius of the waveguide as shown in Fig. 16.
The displacement field in the generic e-th finite
-45° element can be approximated as:
-45°
900’ uEe) :N(r)q(E)elfne+kx3—mt)
454, . . . .
where, N (1) is the shape function matrix and q® is the
0° vector of nodal displacement components in 1, 0, X,
direction:
Fig. 15: The 16 layer adhesively bonded composite pipe
N, 0 0 N, 0 0 N, 0 Q@
Np=|0 N, 0 o N, o o N, o 3D
D 0N 0 0O N, 0 0 N,
[i(E)
r=[N, N, N (32)

(&)
)

N (1) =1-3r+2r*
N, (1) = 4r — 41 (33)
N, () = —r+ 217

T
q()=[Ur1 U Ux31 Up Ug U, Usg Uy U

. x33

G4

The strain vector in the element can be represented
as 4 function of the nodal displacements:

Fig. 16: SAFE  model in  adhesively  bonded

composite-to-composite pipe e =| KL, +ianl 1L, L +L4l N(r)qle) ettt
r or r (35)
material property in global cylindrical system (r, 6, %), the = (kB, +inB, + By )q e
rotation matrices in Eq. 10 requires rotation, the new
rotation matrices are obtained as follow: Where:
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[ e = =
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(= =l el = =]
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(36)
N

B,~L,N(@).B, -L, Y& B, :L3¥+L
I

Nir)
‘ I

The dispersion equation is formulated by using the

Hamilton’s principle in Eq. 5. The variation of the
Hamiltoman of the waveguide 1s presented as:

BH = :’[“J[aqnfebaT(ﬂdt 37)
1 1

where, m 18 the number of elements along the radius r.
@™ and 6T® are element strain energy and kinetic energy
which can be expressed in cylindrical coordinates as:

9 [ 5 s T ae
80 = ['7[7 7, #le® ey e drdodx, (38)
o wln prdt)
ST :J‘_ j; J":) [0 Fu p“ rdrd@dx, (39)

By substituting Eq. 35 mto 38 and some algebraic
manipulation, yields:

SO = 3Kk + Rk + kS + kY + ink{” + K Jq

(40)
Where:
@ _ 5 T
k® = Lm r{B/C”B, Jdr
e . .
k= -[f” 1[B;CYB, + B/ CYB, Jdr
cH : .
kP = .[,m 1[B]CB, - BIC'B, Jdr 1)
(&)
L) 3 )
K = [, 1BIC)B, Jdr
e . .
K = -[f” 1[B;CB, - B, CYB, Jdr
® _ [ ypT e
k{ = [, 1[BICYB, Jdr
The element kinetic energy can be written as:
BT — 8T ['m ¥ g (42)

Where:
&
m' = J.(E) T[NP N]dr
Then, substituting Eq. 40-42 into Eq. 37 yields:

j: {U 8q [ k(" + knkS}” + kK + kY’ +inkS? + k{7~ wzm(e)]q(e)}dt =0

&=l

(43)

Applying standard finite element

procedures to Eq. 43:

assembling

J‘:; <{SUT [kEK1 +knK, +ikK, + n°K, +inK, + K, —mEM]U}dL =0

(44)

where, U is the global vector of unknown nodal
displacements:

K = ka*J,Kz = Lkage),Kj = ngﬂ,lg = ng*’,
el e=1 o1 e=1 (45)

n " n

— () — (&) — (e

K, =| &7 K, = Je, M =|_Jm"
e=] e=l e=l

Due to the arbitrariness of 8U, the following wave
equation is obtained:

[KK, +knK, + kK, + K, +inK, + K, -'M U =0 (46)

where, U is the global vector of nodal displacement
components. Eq. 46 has the form of a three parameter
algebraic eigensystem, depending on the circular
frequency w and on both longitudinal wave numbers k
and circumferential wave numbers n. Here, n is assigned
to obtain the n-th order axial symmetric modes and k is
adopted as the eigenvalue parameter for a given
frequency w.

NUMERICAL RESULTS

A 16 layer adhesively bonded composite pipe model
[(0v/45°/90°/—45),], 18 studied. The mnner radius of the
composite pipe model is 100 mm. The guided wave
assumed propagation along the positive x, direction
which 1s the fiber direction of the first layer. The material
properties of composite and adhesively bonded layer are
presented in Matt (2007).

Figures 17-19 showed the phase velocity dispersion
curves about three different adhesive ways: properly
bonded, poorly bonded and disbond by givingn =1, 2, 3.

5306



J. Applied Sci., 13 (22): 5298-5308, 2013

” \/
4000 |- N .
oof -
= ¢
g 20 T
1000 f1- - « - disbond -
poorly bonded ]

— properly bonded pP=———— —
0
20 0 80 30 100

Frequency(KHz)

Fig.17. Phase velocity dispersion curves with (properly
bonded, poorly bonded and disband)
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Fig. 18: Phase velocity dispersion curves with (properly
bonded, poorly bonded and disband)
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Fig. 19: Phase velocity dispersion curves with (properly
bonded, poorly bonded and disband)

The results showed that the differences between three
adhesive ways are noticeable and the dispersion of phase
velocity could be used as a feasible tool for identification
of the state of the adhesive layer in composite-to-
composite pipe.

CONCLUSION

The characteristics of guided waves in adhesively
bonded composite-to-composite structures are studied in
the paper. The semi-analytical fimte element method and
Hamilton’s principle are used to model and solve the
problem. Both plate model and pipe model are analyzed
through mathematic formulations
calculations, the phase velocity dispersion curves and
wave structures are presented. The results showed some
useful suggestion for inspection adhesively bonded

and numerical

composite structures by guided waves.
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