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Free Vibration Analysis of Elastic Pipe with Crack Defects
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Abstract: Free vibration of elastic pipe with crack defects was analyzed. On the basis of Timoshenko beam
theory, the mathematical modeling of the problem was formulated to mtegral equation. The numerical
approximation of the frequency equation was derived from the integral equation. The first three natural
frequencies and the relative mode shapes of the pipes were obtained by using Matlab program. The numerical
results showed that both the first and the second derivatives of the mode shape functions has a sudden change
at the position of the crack, the magnitude of the change would be enlarged with increase of the crack depth.
The variation of the first and second natural frequencies against different depth and sector angle of the crack

were discussed.
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INTRODUCTION

Cracks present a serious threat to proper performance
of structures. Most of the failures of presently used
equipments are due to material fatigue. For this reason,
methods making early detection and localization of cracks
possible have been the subject of numerous mvestigation
(Hu et al, 2007). And pipes are inportant engineering
stuctures widely met in many applications, e.g., chemical
plants, gas and oil transportation and power plants. Huge
disaster would be caused once the pipes are damaged. So
1t 18 especailly important to detect and forcast the cracks
in pipes.

The vibration analysis of the crack pipe 1s the
inversion problem of the crack detection and it is the
foundation of crack detection. The presence of crack
could change the stiffness of the cracked region and then
the vibration. So the key point of this study to investigate
the vibration regular of cracked pipe and detect the crack
according to the regular.

There is a number of researches have been done by
researchers. Teoh and Huang (1977) presented vibration
of orthogonal anisotropic cantilever beam. It was analyzed
by energy method considering shear deformation and
moment of inertia. Karthikeyan et al. (2007) modeled the
beam using finite element method by Timoshenko beam
theory and developed a method to detect the crack
location and size;, Viola ef al. (2007) investigated the
changes in the magnitude of natural frequencies and
model response of a uniform Timoshenko beam using a
particular member theory. The theory was demonstrated
by two illustrative examples of bending. Kisa et al. (1998)

analyzed the vibration characteristics of a cracked
Timoshenko beam integrating component mode synthesis
and finite element.

However, the integral equation method is rarely used
in vibration of cracked pipe. The integral equation
presented in this paper could be expressed in a unified
form. Its mtegral kemel involves all the information of
cracked pipe, such as the material parameters, geometric
parameter, boundary conditions and crack parameters.
That is why the method is of profound theoretical and
practical significance.

The simulation of the crack is crucial to the modeling
of the cracked beam and is the guarantee of the
correctness of model. The mainly presented methods of
simulating cracks are equivalent cross-section method
(Dimarogonas, 1996), the local flexibility method
(Irwin, 19537) and continuous modeling method
(Carneiro and Inman, 2002). This study simulated the
crack with the equivalent cross-section method which
considered the reduction of the inertia moment and cross
section.

The pipe was mostly modeled in Euler-Bernoulli beam
theory. In tlus study the pipe was modeded in
Timoshenko beam theory considering the influence of
moment of inertia and shearing deformation and it is more
accurate than Euler-Bernoulli beam theory.

MATHEMATICAL MODELING

Consider free vabration of a cantilever elastic pipe
with a fan shaped crack shown mn Fig. 1. Denode the
outside radius of the pipe as b , the mside radius as a, the

Corresponding Author: Qingjun Bai, Department of Applied Mechnics, University of Science and Technology Beijing,

Beijing 100083, China

5440



J. Applied Sci., 13 (22): 5440-5445, 2013

L
< >
I
a|b

» %

Fig. 1: Diagram of cracked pipe
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Fig. 2: Crack function

length as 1., the section shape factor as k. p is the volume
density of the pipe material, E and G is Young’s and the
shear modulus, respectively. | 1s the distance from the
crack to the fixed end. The area and the inertia moment of
the cross-section is denoded as A(x) and I(x),
respectively which are considered as functions of variable
x and dependented on the crack depth h and the sector
angle .

The pipe is modeled as Timoshenko beam, that is, the
effect of shear deformation and rotary inertia are not
neglected. On the basis of Timoshenko beam theory, the
fimdamental equations about the deflection w(x, t) and the
rotation @(x, t) of the beam are:

%[kGA(x)(% - cp)} —pa Y

(1)
%[El(x)%}km(x)(% —@=pl (x)ii_?
The boundary conditions are:
Moo=l =0, B B0 @
Introduce the crack function:
)= —acoot(y 51D 3

where, v is a parameter relative to the size of the
crack opening, h is the maximun of the crack depth. The
crack depth is a function of variable x as H(x) = (b-a) n(x).
As an example, the curves of the crack function m(x) for
h=(b-a)/2,1=1/2, v =100, 500 and 5000 is, respectively
shown in Fig. 2.

The area and inertia moment of cross-section can be
expressed as:

A = afb? 2 %(2aH(x) +H2X)

I6x) - r(b*—a* N sine— o (4)
4 8

Hix)=(2a+ H(x))[az +(a+ H(x)f]

Assuming the deflection and the rotation can be
separated by variables as follows:

wix, t) =Y (x)e, @p(x, t) = O(x)e™ )

and substituting (4)and (5) into (1), one obtains:

d dY(x) ,

— | kGA(%) [—— ID(X)H +per AX)Y(x)=0

dx { dx (6)
%[EI(X) dqc)b((x) ] +RGA) { dz}({x) - (D(X)J + peI{(x)D(x) = 0

In a sunilar way, the boundary conditions (2)
becomes:

YO =d0) =0, Y(L)-BL) = L)=0 (7
THEORETICAL ANALYSIS

The equivalent integral equation: Integrating the two
sides of Eq. 6 and using the boundary condition (7), one
obtains the system of coupled integral equation as
follows:

{Y(x)}w{mx,a) Ku(x,a)T(a)} e ®
00| Ky (8 Kp(xd) |02

where, the mtegral kernels:

CHOPE) (0<E<x)
Cx)P(x) x<&<L

2 (0D=E<x)

1 x<&<L

CE) (JE)-EH(E) (0<E<x)
C&) (JE)-EHED) (x<E<L)
PCEHHE (0<E<x)

PO HE) (x<&<L)

K“(X,%)={
1
K12 (X,E}):K{
Kn(x’&u): {
K22 (Xs@z {

in which:

5441



J. Applied Sci., 13 (22): 5440-5445, 2013

dt

" (D)

= tdt P(x) = *

HOO [} s 160 =109 = [ 52

1 D(t)’

are known functions, A pw’/kG is the frequency
parameter, r=+/I/A is radius of gyration.
C (x) = kGA(x) and D(x) = El(x) 1s, respectively the
shearing and the bending rigidity parameter.

Up to now, the system of mtegral equation for the
cracked elastic beamn 1s obtained. It should be noted that
the integral kemels 1 Eq. 8 mvolves all information about

the beam and the crack.

Numerical discretization: In order to solve the system of
integral . 8 it was discreted numerically into an algebraic
equation by using the collocation method. The interval
[0, L] can be divided into n segment evenly:

0 = X< <X, <<% <%, = L

Then Eq. & can be discreted numerically as:

[Yi}g d {K,,(xﬁa) K,Z(xj,ﬁ,)}[ﬂ ©)
@ " n 2K, x5 Ku(x.8)| 0,
where, Y, =Y (x). © =Dx)(1=1,2, ... n)
Eq. 9 can be written as:
(10)

(AEK-I]Z=O
n

where, T is 2 n-order unit matrix, the mode shape vector

{Kll Klz}
KZI K22

Here denote submatrice:
Ky =[ Ky (xi,gj)]m (,k=1,2)

As Z 18 a non-vamshing vector, the natural frequency
can be determined by the untrivial solution requirment of
Eq. 10:

L

f(l)=det[AHK-IJ=O (1)

Once the frequency is solved from the above
equation, then substituting 1t into Eq. 10 obtains the mode
shape.

NUMERIC EXAMPLE

Vibration mode of cracked pipe: Since mode shape 1s
sensitivity to the crack parameters of beams (Jassim ef al.,
2013), analysis of mode shape i1s meanmgful for crack
detection. The above numeric method was programed in
Matlab and the normalized mode shape was found. As an
example, consider a cantilever pipe which physical
parameters and geometrical sizes are given in Table 1. The
results of numeric computation are shown in Fig. 3-7.
Figure 3-5 are the first three mode shapes of pipes
with cracks of different depth at the location 2L/5. They
are m accordance with the theoretical ones. The mode

Table 1: Physical parameters and geometrical sizes of the cracked pipe

a b L E G ol o
_ T : b
Z=[Y.,.Y,®,.0,] and the integral kernel matrix: 15mm 20 mm _ 765mm 203 GPa 160GPa_775ken? w2
25 h=0
h= (b-a)/10
204 h=2 (b-8)/10
h=3 (b-3)/10
o 15 4
1
T
10
05 |
00 |
T T T T T T T T T
01 00 01 02 03 04 05 06 07 08
A

Fig. 3: First mode shapes of cracked pipes with different crack depth
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Fig. 4: Second mode shapes of cracked pipes with different crack depth
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Fig. 5: Third mode shapes of cracked pipes with different crack depth
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Fig. 6: First derivative of the first mode and the partial enlargement at the cracked location
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Fig. 7: Second derivative of the first mode and the partial enlargement at the cracked location

Table 2: First natural frequency ¢ :(W against crack depth ratio
h/(b-a) and sector angle x(Hz)
hAb-a) E=72 =T =312 =27
0 57.271 57.271 57.271 57.271
0.1 57.265 57.237 57.207 57.201
0.2 57.260 57.200 57.133 57.119
0.3 57.254 57.159 57.044 57.017
04 57.248 57.112 56.931 56.886
Table 3: Second natural frequency r :Jm against crack depth ratio
h/(b-a) and sector angle o (Hz)
h/(b-a) =2 =T o =312 =21
0 356.249 356.249 356.249 356.249
0.1 356.359 356.322 356.286 356.359
0.2 356.432 356.396 356.286 356.469
0.3 356.542 356.469 356.286 356.506
0.4 356.652 356.542 356.212 356.506

shape of pipe with difference crack depth coincides with
each other and they are so smooth as not able to detect
the crack parameters.

Figure 6 and 7 are, respectively the first and the
second derivatives of the first mode shape of pipe with
different crack depth. All curves in the two figures have
sudden change at the location of the crack and the
variation 1s positively correlated with the crack depth. So
the crack location and depth can be easily detected base
on the derivative of the mode shape. Moreover, the
method can be easily realized m engineering and 1s
economical.

Frequency analysis against different crack location and
depth: Table 2 1s fundamental frequency agamst different
crack depth and sector angle when the crack 1s at L/5. It
shows that: the frequency gose down as the increase of
the sector angle and depth ratio. Table 3 15 the second
natural frequency when the crack 1s at L/5. It shows that
the frequency has the Mimmum when |¢ 15 3|7w/2. The
frequency goes up when 4 1s less or more.

The crack depth and sector angle can be determined
by the frequencies according to Table 2 and 3 when the
crack location was found by the method m the above
section.

CONCLUSIONS

The frequency equation of the elastic pipe was
presented from the system of integral equation. Its kernel
contains the information about the material parameters,
geometric parameter, boundary conditions and crack
parameters. The numerical calculation of the equations
was obtained by discreting the integral equation using the
collocation method.

The first three mode shapes of the cracked pipe were
presented and the first and second derivatives of the first
mode shape were obtamed. The results show that the
mode shape of the cracked pipe is smooth; the first and
second derivatives of the first mode shape have sudden
change at the location of crack and the change enlarges
with the mcrease of the crack depth. The depth and
location of a cracked pipe can be detected on the basis of
this result.

The variation of the first and second natural
frequencies agaist different depth and sector angel of the
crack were discussed. The datum of the first two natural
frequencies against the crack depth and sector angle were
presented.
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