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A Camera Self-calibration Method using a Regular Prismoid

Yue Zhao and Limin Xu
School of Mathematics and Statistics, Yunnan University, 2 Cuihu North Road,
650091, Kunming, Republic of China

Abstract: Camera calibration 1s an inportant part of computer vision. The theory 1s based on the formation of
orthogonal vamshing pomt under perspective projection and linear calibration for a camera. A novel camera
self-calibration method based on orthogonal vanishing point is presented, of which the target is the regular
prismoid where a top is the regular polygon that can contain a set of points at infinity in orthogonal directions
and sides are congruent isosceles trapezoids that also contain a set of points in infinity in orthogonal
directions. The pomt at infinity 1s called the vanishing point in the image plane. According to the constramts
of the orthogonal vanishing points to absolute conic, the intrinsic parameters of a camera can be solved
linearly. The experimental results show that the algorithm can accurately and reliably estimate the intrinsic
parameters of the camera and 1t 1s very close to the actual situation.
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INTRODUCTION

Camera calibration is the basic requirement to obtain
three-dimensional (3D) information from two-dimensional
images in the field of computer vision and it is an
indispensable step to complete many visual works.
Accurate calibration of internal and external camera
parameters can not only improve quality of a camera
screen but establish a good foundation for subsequent
matching of multiple images and 3D reconstruction
(Hor et al, 2011). At the same tume, the accuracy of
calibration can better satisfy the need of
measurement system, such as mndustrial machine vision
(Voetal, 2011).

Camera calibration 1s the process which determinates
the intrinsic parameters. At present, existing calibration
algorithms use geometric property of calibration object
(Junejo and Foroosh, 2010, De Franc et al., 2012) or use
the constraint of camera's own motion (De Ma, 1996,
Grobe et al, 2012). De Ma (1996) proposed the
calibration algorithm using two sets of motions. And the
motion 1 each set 1s constituted by three sets of mutually
orthogonal pure transformation vector. This algorithm
uses rotation or translation constraint of camera to
calibrate the camera’s parameters. These algorithms
require higher constraint for the camera motion but also
need to calculate the complex nonlinear equations. In
literature (De Franc et al, 2012), the method used
geometric information of a calibration block from a single
umage to calibrate. This method requires camera neither to

make any motion, nor to seek world coordinates
but need to extract feature pomts in the calibration
process. The calibration process 1s too complicated and
it is difficult to avoid the error which is caused by
recovering the feature points from an image. The literature
(Suziedelyte-Visockiene, 2012) proposed a calibration
method using Matlab. Using this procedure of camera
calibration could get much higher accuracy of calibration
results but it requires users to be familiar with the
software, therefore, which restricts the application and
extension. A self-calibration method 1s proposed in the
literature (Maybank and Faugeras, 1992), which does not
need calibration object and usmg the relationship
between corresponding points in multiple images can
directly calibrate the camera intrinsic parameters but this
calibration algorithm has poor robustness and needs an
estimation of the large number of parameters.
Ricolfe-Viala and Sanchez-Salmeron (2011) proposed that
using a set of optimal conditions resolved calibration
process accurately. The calibration method uses several
images of a 2D pattern. The optimal condition defines that
the number of points and the number of unages resolve
the calibration accurately. Criminisi proposed the method
using properties of vanishing point and vanishing line to
calculate the camera intrinsic parameters in a single image
(Criminisi et al., 2000). However, the calibration method
using the vanishing pomt need to extract ellipse from an
image to determine the image point of a circle center,
which malees the solution process relatively complex. The
improved method based on vanishing point was reported
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in Junejo and Foroosh (2010) and Pu et al. (2011), which
only needed to extract six points in a line. He and Yung
(2007) and Zhao and Lv (2012) proposed a new method to
overcome ill-conditiomng m the calibration method based
on vanishing point. Tang et al. (2012) presented a novel
family of rigorous and comprehensive mathematical
self-calibration additional parameters for the camera
mtrinsic parameters, of which the theoretical basis 1s the
Laplace’s Equation and the Fourier Theorem. The various
methods were compared by Kanhere and Birchfield (2010)
and Zhao et al. (2012) and used the best method for traffic
motion application.

In this study, we use a top and sides of a regular
prismoid in two images to fit vanishing point. Using
constramnts of the vamshing pomt in the orthogonal
directions to the absolute comic can solve out the
equation of the absolute conic and then can obtain all of
the intrinsic parameters of a camera.

PINHOLE CAMERA MODEL

The camera model is the classic pinhole imaging
model in this paper, also known as the pmhole camera
model. The mtrinsic matrix of a camera 1s (Criminisi ef al.,
2000):;

(1)

where, £, f, are the focal lengths, s 1s the skew factor,
(uy, vy) 18 the principal point in image coordinate system.

In this study, the calibration pattern is a regular
prismoid. The regular prismoid is obtained by cutting a
regular pyramid. As Fig. 1, assume that there 1s a regular
prismoid in the scene, which is composed of congruent
isosceles trapezoids and two regular polygons of which
sides are the above and bottom sides of the isosceles
trapezoids. A regular prismoid has the following
properties:

The sides of a regular prismoid are congruent
isosceles trapezoids

Two bottom sides of a regular prismoid and its cross
section which 15 parallel with the bottom sides are
regular polygons

Regular prismoid can be divided mto two types
according to the number of side n, m which the even
regular prismoid is 2n, the odd regular prismoid is 2n+1,
with n=3 natural number.

CONSTRAINT OF REGULAR PRISMOID ON THE
CAMERA INTRINSIC PARAMETERS

Proposition 1: According to the property (2) of a regular
prsmoeid, upper and lower bottoms of the regular prismoid
are regular polygons. If the number of edges of regular
polygon is equal to the number of the lateral edges of the
regular prismoid, there exist at least a set of orthogonal
points at nfinity m each upper bottom of regular prismoid,
of which the images are called vanishing point.

Below two proof methods of orthogonal vanishing
points are given covering the parity regular prismoid:

Proof: When the number of lateral edges is 2n, the
mumber of edges of a regular polygon on the
bottom 18 2n and the number of lateral edges 15 2n,
denoted as A AL A, . The centrosymmetric two
edges of a regular polygon are parallel, so that is:

17 M+ i+ o

nAn+1 // AEnAl

(2)

{AA A A )
ziz=n-1

In a regular polygon A, A,, L, A, the pomts at
infinity in the direction of A /A, are denoted as P, (1 <i<n).
The images of A, A,, L, A, P.P,, L, P, area, a, L, a,,
P P» L, pa. respectively, therefore, the number of
vanishing points formed by 2n edges is n.

If nis odd, as Fig. 2, the orthogonal vanishing points
formed by the edges of the regular polygon are on the
diagonals of the regular polygon.

OO 38

Fig. 1(a-b). Regular prismoid: (a) Regular hexagonal
frustum pyramid (b) Regular pentagonal
frustum pyramid
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Fig. 2(a-b): (a) Regular hexagonal (n = 3) and (b) Tts
corresponding image
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In the regular polygon A, A, L, A,., we
have:
A1A1+1 i Ai+nA1+n+1 . <i<n—1 (3)
A A 1A A,
with 1 <i<n-1.
If 1=n, then:
AA G ITALALA A ITA A, (4)

{

The points at infinity in the direction AA,,, are
denoted as P, and the pomts at mfinity in the direction
A A, are denoted as P*. The corresponding image
points of P, P*, are p, p*;, respectively, with 1 <i<n, thus
having:

According to the relation of corresponding points n
the projective transformation, Eq. 6 can be gotten from
Eq 5

A A J“AI’)+1AA‘QI’1

' o

P=
P =

AA <A A

PRt | i+n’ Han+l

AA L XA A

1% Ml i+ 7 N4n

)

1<izn-1

=a4a,_ , xa, 4
{p,* 17 n i+ , 1< 1 <n—1 (6)
px = axawnﬂ % a1+1a1+n
Fori=n, Eq. 5 and 6 become:
{Pn =AALALAL PI=A A XA A (7
P, =2,3,,x2;3, p, =4,3,X3a, 8,

Due to AAu 1A AL, (Ticn-1), AN A b wp
and p* (1<i<n) are a group of orthogonal vanishing
points.

If n 18 even, as Fig. 3, the orthogonal vamshing
points formed by the edges of a regular polygon are in the
diagonal of the regular polygon.

A A,

A, A,

af

Fig. 3(a-b): (a) Regular quadrilateral (n = 2) and (b) Tts
corresponding image
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In a regular polygon, we have:

A'iA'H-l //A1+nAn+n+1=A nA n //A EnA 3n
it i it i
o T i<y (8)
A‘xAiH LA nA n
= id—H
2 2
For:
.o
1=—
2

Equation & becomes:

AA

=
5

Ay AnBan AN
E)

3n
—
2

i
=l

(9
AL, LAA,

Since the points at infinity in the direction AJA.., are
denoted by P, and of which the corresponding image
points denoted by P, with 1 <1<n, we get:

1<i=n-1

{Px = A1A1+1 X Ai+nA1+n+1 » (1 0)

According to the relation of corresponding points in
the projective transformation, Eq. 11 can be gotten by
Eq. 10

p;=4a;3,,x a;+na1m+l’1 <i<n-1 (1 1)
P.=4.,4, 328 34
i—= it=—  it—H i— i+—H
2 2 2 2
Due to:
P (] .. n
AA LA A 1<i<—-11AA LAA , p andp 1=i<—-1

Are a group of orthogonal vamshing pomnts
according to the property of the vanishing point in the
orthogonal direction.

When the number of lateral edges is odd 2n+1, the
number of edges of a regular polygon is 2n+1, as shown
inFig. 4.

The number of edges of a regular polygon is 2n+1
while the number of lateral edges 15 2n+1 in a regular
prsmoid, denoted by A AL A,.,. Under these conditions,
a vertical relationship does not exist between edge and
diagonal in the regular polygon. In order to achieve the
camera calibration, draw the inscribed circle to the regular
polygon, in which the center of the circle 15 O and the
interactions between the edges of regular polygon A A,
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Fig. 4(a-b) (a) ©Odd regular pentagon and (b) Its
corresponding image

AAL LA, LA, and the inscribed circle are B B, B ..,
The points at infinity in the directions AA, A A. T,
A, A are P, Py, P,..,, respectively. The points at infinity
in the directions B A, BoAs Bulois B, BunA
B.:A, L ByaAy, are P*, P L, P oL, respectively.
The image points are denoted as a, b, p. p*
corresponding to A, B, P, P, respectively, with
1<1<2n+1.
In the regular polygon A A, L, A,.,,, We have:

A‘xA'x+1 1 B1A1+n+1’1 < 1 =n
AA,LBA _.n+l<icin (12
A, LA LB, B

2n+l 2n+H ol

The points at infinity are P,P,, T, P,,,,, in the direction
AAL AN L A, LA, respectively, corresponding to the
image points PPy, L, Py The midpeints B, B, B, of
AA, AA, L, A, A, are known According to the
properties of cross-ratios, we can get:

{(A‘AHI,B]E):—I, 1<i<2n (13)
(g, By Py ) =-1
According  to the corresponding  relation

between a space pomt and its image point m the
projective transformation, FEq.
Eqg 13:

14 can be gotten by

{(a,a,wb,pi):—l, 1<i<2n (14)

(a2n+la'l =b2n+1p2n+1) =-1

The points at infinity in the direction .

BiA., B, L BAg,, BuA, BuA, L
ByaAu, are P, P L, P are P, PXLL
P...*, respectively, comresponding to P*, P)*, L1,
P,...*, according to the property of the cross-ratio, we
have:
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—

Fig. 5(a-b): (a) Isosceles trapezoid ABCD and (b) Its
corresponding image

(B1A1-m+1 5OP1*) =i 1<i<n (1 5)
(B,A, ,OPY=A, n+l<ic2n+1
Where:
A=—cog—
2n+1
According to  the correspondence of  the

corresponding relation between a space point and its
image point in the projective transform, we obtamn:

(16)

(ba,_ .opy=An+1<i<2n+l

{(bﬁm,op:‘) =hlzi<n

From Eq. 14 and 16, the coordmates of vanishing
points p; and p* can be obtained in the orthogonal
directions.

Proposition 2: According to the property (a) of a regular
prismoid, if the side of a regular prismoid 1s an 130sceles
trapezoid and of which the upper and lower are the two
parallel segments which are perpendicular to the line
connecting the middle points of the upper and lower, the
vamshing pomts are perpendicular, corresponding to the
pomts at infinity in the two directions.

Proof: One side of a regular prismoid is denoted as
ABCD. On isosceles trapezoid ABCD, AB, CD are two
parallel edges, the midpomts of AB and CD are denoted
as M, N and the midpoint of MN is O.

The points at infinity in the directions AB, MN are P,
P*, respectively. The images of A, B, C, D, M, N, O, P, P*
are a, b, ¢, d, m, n, o, p, p*, respectively (Fig.5a-b).
Because:
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(17)

P= ABxCD
{MN,0P") = -1

According to the corresponding relation between a
space pomt and its 1mage point m the projective
transformation and the characteristic of cross-ratio
invariability, Eq. 17 can becomes:

{p =abxcd (18)
(mn,op”) = (MN,0F")=-1

By the property of the isosceles trapezoid, we have
MN 1 AB, so p and p* are orthogonal vanishing points, of
which coordinates can be obtained from (18).

The constraint equation of the orthogonal vanishing
points obtained from Proposition 1 and Proposition 2 to
the absolute conic is:

pwp* =0 (19)

SOLVING ALGORITHM OF THE INTRINSIC
PARAMETERS

Step 1: Input two images of a regular prismoid, of which
each image at least includes the upper bottom
and two adjacent sides and extract the feature
points on imaging plane

Obtain a group of orthogonal vanishing points
on the upper bottom and the orthogonal
vamshing pomts on each side according to
Proposition 1 and Proposition 2, respectively.
Each image can provide three pairs of orthogonal
vamshing pomts, so two images can provide six
pairs of orthogonal vanishing points

Based on the constraints of orthogonal
vanishing  points to the absolute conic
pwp* =0, pand p* are a group of orthogonal
vamshing pomts. Six pawrs of orthogonal

Step 2:

Step 3:

@ ®)

vanishing points can provide six groups equations
similar to the above. Owmng to w contaming five
independent parameters, w can be obtained through
solving these equations, denoted as:

@ 0y &
@=)my @y O
@y @y O

Utilize the method of Zhang (2000) can individually
calculate each mtrinsic parameter. Furthermore, the camera
intrinsic matrix K can be gotten.

SIMULATION

A regular quadrangular frustum  pyramid, a
regular pentagonal frustum pyramid and a regular
hexagonal frustum pyramid are used in the simulation as
a calibration pattern, as shown in Fig. 6. A simulation
camera 1s set as follows: £ = 1000, £, =1000, s = 2, u, = 400,
v, = 300,

For each calibration pattern, we perform 100
independent trials and the mean values of the intrinsic
parameters are computed over each run, shown as in
Table 1. It can be seen that the results of the two methods
are both in the allowed error range but the values of
f, =1000, u, = 400, v, = 300. obtained from our method are
much closer to true values (1000, 400, 300) than the DLT
method.

In order to verify the robustness of the algorithm,
impose the Gaussian random noises to the image points
with mean 0 and variance 0.0-6.8 (pixels). Hundred
independent experiments are made under each noise level.
Figure 7 and 8 represent the curve of absolute average
error about the mtrinsic parameters for this method and
Direct Linear Transformation (DLT) method with the noise
changes. It can be seen that the experimental results of
this algorithm has better robustness, when the noise level
is large, the standard deviation of each parameter remains
small.

(©)

Fig. 6(a-c): Simulation calibration pattern (a) Regular quadrangular frustum pyramid (b) Regular pentagonal frustum
pyramid and (¢) Regular hexagonal frustum pyramid
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Fig. 7(a-e): Curves of the mean absolute error of the five camera intrinsic parameters (a) f, (b) f, (¢) u,, (d) v, and (e) s
under different noises levels and calibration patterns

5 5'&&

3

Absolute error

3 4 3
Nosies {pixels) Nosies (pixels)

3 4 5

L=

i
had
.
g
L=

i
oo
o
g

191 &)
354
3.01
254
2.01
151
L6
0.54

0.0 T T T
0 1 2 3 4 5 6 7

Nosies {pixels)

Absoi
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Table 1: The mean values of the intringic parameters over each run in different simulation patterns

Calibration pattern 1, f, 8 U, v,

Rectangular 998.2657 1001.1078 1.9626 399.96083 01.0068
Pentagonal 1001.3415 1000.1056 1.7341 400.0787 297.9274
Hexagonal 999.8178 1000.0674 1.9373 400.0072 300.9617
DLT method 1000.4323 999.7521 2.0149 400.0100 299.7642

Table 2: Camera Intrinsic Parameters with Real Data for Different Calibration Blocks

Calibration block f, £, 8 U, Vo
Rectangular 694.3452 712.3466 -2.4526 315.8492 238.4324
Pentagonal 687.5665 749.8472 4.5642 312.3257 237.4521
Hexagonal 715.8783 734.9895 2.0353 317.2467 238.6983
DLT method 710.4539 722.5435 1.9763 309.2456 236.7458
@ > - () - _
% =
/ N /\ f :
4 e y, ~
/ | }_,»’*
\

. f
I |
4 \/
- J !
Fig. 9a-c): Real image of regular prismoid
match characteristic point on the calibration pattern. Thus
REAL DATA avold errors caused by the wmregular feature points
extracted from image. The calibration process only needs
In the real data, respectively make calibration blocks, two images of the calibration pattern. The solving method

regular quadrangular, pentagonal and hexagonal frustum 1s linear. The experimental results show that the algorithm
pyramids, as shown in Fig. 9. For each calibration pattern ~ has a higher accuracy. There 1s great value in the field of

take two images from different positions with the camera. vision measurement.
The image resolution is set to 640x480.
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