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Abstract: Hash function is an important cryptographic primitive used in a wide range of applications, for
example, for message authentication and mn digital signatures. MD 4/5 and SHA-0/1/2 are examples of widely
used hash functions, but except for SHA-2 (SHA-224, 256, 384, 512), they were all broken in 2005 after more than
a decade of use. Since, then, the structure and components of cryptographic hash functions have been studied
and revisited extensively by the cryptographic community. STITCH-256 was mtroduced to overcome problems
faced by the MD- and SHA-family hash functions. STITCH-256 employs the Balanced Feistel network and its
step operation runs in four parallel branches. The algorithm was claimed to produce good diffusion and its
outputs were claimed to be random. To evaluate its suitability for such purposes, avalanche and empirical
statisti- cal tests are commonly employed to show that there 1s empirical evidence supporting the claims. In this
study, we report on the studies that were conducted on the 1000 sample of 256 bit of output from STITCH-256
algorithm. The studies include the study of diffusion and statistical properties of STITCH-256 using avalanche
test and nine statistical tests. The results suggest that the claims were true where STITCH-256 produces good

avalanche effect, thus good diffusion property and its outputs appear random.
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INTRODUCTION

Cryptographic hash fimction 1s a function f that
accepts arbitrary length of input message m and
produces a fixed length of output message h, f [0, 1]*—f
[0, 1]%. The length of the input message can be a single
byte of an alphabet or hundreds megabytes of a video file.
The input message m is sometimes called pre-image and
the output message h(m) is called hash value. To be used
in cryptographic applications such as digital signatures,
the function has to satisfy the following:

+  Pre-image resistance: Given a hash value h(m), it is
mfeasible to find any message m which hashes to
h(m). Thus property 1s also known as one- wayness

¢+  Second pre-image resistance: Given a hash value
h(m) and its corresponding message m, it is infeasible
to find another message m’ such that h(m) = h(m”)

+  Collision resistance: Given a hash value h(mn), it is
infeasible to find any two distinct messages m and
m’, where m # m’ such that h{m) =h(m”)

Finding a pre-image or a second pre-image by brute
force attack would require 2" operations and finding a
collision by hirthday attack would need approximately 2",
Damgard (1990) showed that the strongest property is
collision resistance where preservation of collision
resistance implies preservation of second pre-image
resistance and preservation of second pre-image
resistance implies preservation of pre-image resistance.
Thus, collision resistance is the most important property
for cryptographic hash function and most of the attacks
were aimed at breaking this property.

The most popular and widely used hash functions
are known as dedicated hash functions, whose design
method 1s a serial successive iteration of step operation.
These hash functions include MD35 (Rivest, 1992b),
HAVAL (Zheng et ai., 1993, FIPS 180, 1993) and SHA-1
(NIST, 1995). These hash functions are also known as
MDx-class hash functions since they have
commonalities in their design, 1.e., same design principle
with MD4 (Rivest, 1992a). In principle, the design of
MDx-class hash functions follow Merkle-Damgard
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iterative construction (Merkle, 198%; Damgard, 1990). In
this construction, the security of the hash function H 1s
reduced to the security of the compression function of
f. However, most of the compression functions of
MDx-class hash functions are light and relatively simple.
This has led to the failure of these hash functions to
preserve a property of collision resistance. After more
than a decade of use, all of these hash functions were
broken in series of attacks by Van Rompay et al. (2003),
Wang et al (2004, 2005a, b), Wang and Yu (2005),
Biham et al. (2005) and Yu et al. (2006), to name a few. The
successful attacks agamst these hash functions are
differential attacks. The attacks aimed at producing zero
output difference with non-zero input difference in the
input messages (Wang et al., 2005¢). The hash function
15 considered as msecure if one has successfully
developed an algorithm that can vanishes such difference
1n its compression function. As the compression function
of MDx-class hash functions is light and relatively simple,
1t 18 easy to construct differential characteristic n it that
leads to collisions. This could probably due to poor
diffusion n the step operation of MDx-class hash
function, i.e., did not produce a good avalanche effect.

STITCH-256 (Jamil et al., 2012) was introduced to
recommend a new step operation permuted in a so-called
stitching permutation. The description of the step
operation in STITCH-256 is given in the following section.
It was claimed that the outputs of STITCH-256 appear to
be random and the step operation produces good
avalanche effect. To suttability for
cryptographic  purposes, and empirical
statistical tests are commonly employed to show that
there is empirical evidence supporting the claim. In this
study, we report on the studies that were conducted on
the output bits from STITCH-256 algorithm. The results
suggest that the claims were true and STITCH-256 1s
suitable to be used for cryptographic purposes.

evaluate its
avalanche

DESCRIPTION OF STITCH-256

Table 1 shows the basic notation used to describe
STITCH-256. STITCH-256 employs Merkle-Damgard
iterative construction in order to produce a fixed size of
output from arbitrary length of mput and a variant of
Davies-Meyer mode of operation as depicted in Fig. 1. In
this vanant mode of operation, it takes a message block M
and the previous hash value h. For the first iteration, the
h; 1s the IV. The output from left most and right most
branch, Bl and B4, are then added with the previous hash
value b, and output from B2 and B3. The output from this
operation is then XORed together and added once again
with h,. The output 1s h,,. This process 1s repeated until
all the message blocks M are processed. If the two
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Fig. 1: Mode of operation of STITCH-256

Table 1: Notation and description of symbols used in algorithm equations

CA rules Representation as boolean function
29 XB((XDZIVY)

39 ((xe¥)Vz)ay

27 xe((xey)Vz

46 GO IBYY Z)

53 XV (voz)ey

58 XV (vez)ay

71 ((xaZ)yIar

83 (XV (veZ))er

branches on the right are denoted as a big function E1
and the two branches on the left are denoted as a different
big fimetion E2, this variant of Davies-Meyer mode can be
formulated as:

h., = EleE2+h,

The update can also be seen as the h 13 updated to
by, by computing:

by, = [hAB1(h, X, (M)+B2(h,, %M )]e[h+B4
(hy, 2 ,(M)+B3(h,, B, (M) ]+hy

where, % (M jforj=1,2,3, 4and 0= 1= 15, is the sum of
sixteen 32 bit message words W, that has been rearranged
according to Fig. 2. Bach line needs two %, (M) and they
are different in each line. This gives a total of eight
different orderings for the compression function.

STITCH-256 processes 512 bit blocks of input
message and produces 256 bit block of hash value. The
input message 1s first appended by a single bit 1 to the
least significant bit of the input message, followed by as
many zero as possible until the length of the message is
448 modulo 512 which 1s filled up by the 64 bit message
length modulo 264.

COMPRESSION FUNCTION OF STITCH-256

The compression function of STITCH-256 runs in
parallel of four branches, B1, B2, B3 and B4 as illustrated



J. Applied Sci., 13 (5): 673-682, 2013

in Fig. 1. There are three main components in the
compression function of STITCH-256 namely, message
expansion, step operation and Boolean functions.

Message expansion of STITCH-256: The message
expansion of STITCH-256 follows these formulas:

W, =M, for O<t<15

W, =»11 (s,{(W-16, W;-15, W-14, W-13+s (W, 5,
Wi, Wop Wo@SV )t 13 (5(Wos, W, W, Wois,
(W... W, W, W DasSV)) for 16<t<63

where, s, (w, x, vy, z) = woxaysz and s, (W,X,V,
Z) = wHx+y+ z.

It uses two salt values to support the message
expansion of STITCH-256, where SV, = 67452301 and
SV, =41083726. The message expansion of STITCH-256 is
llustrated as m Fig. 3. In STITCH-256, the 512 bit message

input is expanded to 32 bit message words. This gives the
output of message expansion as 1024 bits. All the
message words W.. W, are then reordered to give
different message ordering in each line. The compression
function of STITCH-256 requires eight X, (M) for the
whole function as described earlier and the orderings are
depicted in Fig. 3. It shows the mput order of message
words M,,.., M,; applied to Bj(1<j<4) branches. The
number with an asterisk denotes the message words W,
for 16<i<31. This means 1° refers to message words W,

2" refers to message word W ,, so on and so forth.

Step operation of STITCH-256: Step operation of
STITCH-256 is designed as shown in Fig. 4. The step
operation of STITCH-256 can be seen as a Balanced
Feistel Network where registers A, B, C, D 1s one half
and registers E, F, G, H is the other half. Here, we simply
name the division as the left and right wings, respectively.
Each wing has different step operation, different Boolean
functions and different constants. We divide the step
operations in STITCH-256 into two phases; the first phase
serves as a heavy step operation and the second phase
involves only permutation. We will use the notation of left
and right wings throughout this study.

In the step operations of STITCH-256, two distinct
Boolean functions F3, F4 are used in the right wing
and one Boolean function F2 13 used m the left wing.
In the right wing, the registers and message words are
processed through seven steps whereas for the left wing
the registers are processed through six steps, prior to the
mmtial permutation. Registers A, B, C and Di are first
processed m the left wing during the first phase,
followed by initial permutation and finally processed in
the first phase of right wing. This means the registers are

Br Msgl 0 |1 [2[3[4f5]|6]|7[8]9]10[11]12[13]14]15

Ord
Tl ot j2f3[4]5]6]7]8]9]I0[11]12]13]14]I5
2015012t [ 3 4S5 |6 78] 910 3" 1213 |14
213 (141510 L |10)11 |4 [5]6 |7 |89 2] 3]12]13
4" [13'14')15'(0" [ 9" [10" | 11'| 4" |5 (6" | 7" | 8 1'"| 2'] 3" |12
315 [12(13)14({15(8 |9 |10 |11]4 |56 |70 1]2]3
6' | 3" |12'|13'[14'|7' [ 8 | 9" |10'[11']4" [5" |6 |15 | O 1] 2
4 (7 (2|3 12(13]6 (7 |8 |9 [10]11 (4 |5 |14([15[ 0] 1
8 123 (125 |6 |7 |8 ]9 |10"11'|4" [L3"[14']L5"]| O'

Fig. 2: Message orderings for four branches in
STITCH-256
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Fig. 3: Message expansion of STITCH-256
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Fig. 4: Step operation of STITCH-256

processed in two sets of non-overlapping step
operations. After being processed in the right wing,
registers A, B, C,and D, are permuted i the second
phase and used to update the values of E. , F..,, G, and
H,,,. This process occurs vice versa and in parallel, for
registers B, F,, G, and H, where they finally update the
values of A,,,. B.,,. C.,, and D,,,.

Let the outputs for A, B, C, D, E, F,, G, and H, after
the first stage are denoted as A, B’, C°, D", E’, F°, G” and
H’, respectively, defined as follows:

A’ = DitF2((A+B), C, D))

By = @iF 2((A+B), C. D)

' = BAF2((A+B).C.D)

D = CHF2((AHB). C, D)

F = EAF4(E, W, F3(F, G, H))

G, = FAF4E, W, F3(F, G, H)

H; = GAF 4E, W, F3(F.,G H))

E, = « (¢ F4E, W,F3(F,G,.H))

A single step operation in each wing updates its new
registers Ay, By, Cu Doy Euy Fuw Gy and H,, by
producing the following outputs:
= F2((E+F), G, Ho+H
¢, +F 2((BEAF), G, H)
F2((E+F), G, H)+F,

F2((E+F), G, H G,

«' (@ +F AN, W, F3(B,C.D))
AFF 4(A, W, F3(B, C, D))
BAF 4(A, W, F3(B,C, D))
CAF 4(A, W, F 3(B,C, D))

+ 1m“Upiw“>

EQFJ

T

Second phase

e
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where, @, is different for each branch and the details can
be found by Jamil ez al. (2012). The step operation of
STITCH-256 158 illustrated in Fig. 4.

As described earlier, the outputs after mitial
permutation in the left wing, A, B*, C*, I’, are processed
in the first phase of the right wing. They are not only
permuted, but also become the new value for B, F... G.,,
H,,, after the permutation m the second phase of the right
wing. Then, the new values in registers B, F, G, H are
iterated in the first stage of the right wing step operation,
permuted and become the new value for A, B.,, C.,,
D.;. This happens sumilarly for the output after mitial
permutation in the right wing.

Note that the mnitial permutation 15 the same as the
permutation in the second phase, where it permutes the
registers one block to their night. The entire process looks
like a stitching permutation when one views it from top.
Thus it gives the name as STITCH-256. The stitching
permutation 15 designed to maximize the propagation of
intermediate chaining variables, thus lower the probability
to construct differential characteristics. The stitching
permutation when it is viewed from top is illustrated in
Fig. 5. Fmally, each wing in a branch processes sixteen
message words and this makes each branch m the
compression function of STITCH-256 to have only sixteen
rounds of step operation.

Boolean Functions in STITCH-256: STITCH-256 denves
its Boolean functions from a set of one-dimensional
Cellular Automata (CA) rules (Wolfram, 1984). Table 2
shows the CA rules represented as Boolean functions,
used n STITCH-256.
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Fig. 5: Stitching permutation in STITCH-256

Table 2: CA rules used in STITCH-256

Notation Description

AeB XOR operation of A and B

A+B Addition of A and B modulo 2%

M, The i-th block of the 32 bit input message M
W, The i-th block of the 32 bit expanded input message W
W (A) Bit rotation of A by n position/s to the lett
W (A) Rit shift of A by n position/s to the left
»(A) Rit rotation of A by n position/s to the right
»(A) Rit shift of A by n position/s to the right

N Number of rounds in the message expansion
h; i-th chaining variable

AVALANCHE EFFECT OF STITCH-256

Having a strong avalanche effect is seen as a
continuous effect where small differences are mapped to
big differences. However, as we only work on discrete
spaces here, all functions are also continuous. Therefore,
continuity itself cannot be of any help for quantifying the
avalanche effect. In our study, we are interested in the
average behavior of the step operations of STITCH-256.
Here, we present our empirical results on the effects of
inducing small differences. In particular, we study the
behavior of the output bits in the full round of step
operations in STITCH-256 for various samples.

Experiment: In principle, any cryptographic algorithm
must have a property that the redundancies at the input
should not leak any information in the output. Based on
this understanding, we construct three types of data sets,
each having different structures. Then, we observe the
avalanche effect in the output bits and observe the
structure in some of the test vector samples. The types of
data sets are as follows:

Low density message: The low density message 1s a
message formed by binary strings of low weight. Tn
our case, the number of *1°s in the binary strings is
less or equal to 3
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High density message: The high density message is
a message formed by bmary strings of high weight.
In other words, the inputs of the low density
messages are complemented bitwise

Random message: The random message is a message
formed by a random distribution between bits O and
1 n the sequence

For each of the data type, we prepare 1000 sequences
of 512 input bits each which makes up a total of
512000x3 = 1536000 bits tested in the experiments.

Empirical results and analysis: Here, we present our
empirical results on the effects of nducing a smngle bit
difference for a full round of STITCH-256 algorithm in
three different data categories. For our analysis, we chose
the following parameter:

The number of steps s that we consider. In our
experiment, we measure the avalanche effect of
STITCH-256 algorithm for s = 16 and 32

Size § of the induced input difference is 1. Tt means
that we are mainly interested in a smallest value here
to observe the property of Strict Avalanche Criterion
(SAC) in STITCH-256

The changes or the effects from a single bit flip in the
input are calculated and stored. Table 3 describes the
breakdowns of the results obtained from the experiment
conducted on three data categories.

It can be seen from Table 3 the 3000 sequences of
256 bit hash values of STITCH-256 produced the desired
avalanche effect and also satisfy Strict Avalanche
Criterion (SAC). Figure 6 shows the avalanche effect of a
single flip-ping in input bit for low density data. It can be
seen that the avalanche effect for 1000 sequences of
256 bit hash values for low density data is well scattered
around 0.5. Figure 7 shows the total number of 512 bit
output sequences with respect to the avalanche effect.
From Fig. 7, it can be seen that the avalanche effects of all
the output sequences lie between 0.495-0.504. This shows
that on average, half of the output bits were changed with
a single mput bit flipping.

The similar effect applies to the high density data and
random data, where their avalanche effect for the same
length of sequences and output bits are well scattered
around 0.5. This 1s depicted m Fig. 8-11. Figure 8 shows
the total number of 512 bit output sequences of high
density data with respect to its avalanche effect. From
Fig. 9 it can be seen that the avalanche effects of all the
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high density data
Table 3: Results from the avalanche experiments for three different data types
Rample size/ Min Max Average
Data category  sequence length  avalanche  avalanche  avalanche
Low density 1000/256 0.4956 0.5042 0.5000
High density 1000/256 0.4956 0.5039 0.5000
Random 1000/256 0.4949 0.5046 0.5001

output sequences lie between 0.496-0.504. This shows
that, on average, half of the output bits were changed
with a single input bit flipping. From Fig. 11, it can be seen
that the avalanche effects of all the output sequences lie
between 0.495-0.505. This shows that on average, half of
the output bits were changed with a single input bit

tlipping in random data.
From the results of ow experiment, it was
shown that the output of STITCH-256 algorithm
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appears to provide Strict Avalanche Criterion for all
three data categories. Next, we showed that stitching
permutation in STITCH-256 increases the diffusion
property of the algorithm. This can be seen from
Fig. 12 that the factor for STITCH-
256 if 1t runs without stitching permutation lies at
0.24-0.26. The main property in stitching permutation
s 1t the mtermediate chaining variables
from the left wing to the right wing and vice versa, in
has its
step operation changed every after a single iteration.
This provides high bit propagation through a single
iteration.

avalanche

15 swaps

each iteration. Tt means that each register
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Fig. 12: The avalanche factor for STITCH-256 without stitching permutation

RANDOMNESS OF STITCH-256

For the outputs of the hash function to be
indistinguishable from a random oracle, they have to be
tested in terms of randomness tests. Tt means the outputs
or the hash value of hash function has to be shown to be
random. This evaluation of the randomness can be done
by using statistical test. In our case, we consider using
NIST statistical test suites that contams 15 tests that,
under different data category, can be viewed as 48
statistical tests. The list of the tests are frequency test,
block frequency test, runs test, long runs of ones test,
rank test, discrete Fourier transform test, non-overlapping
template matching test, overlapping template matching
test, linear complexity test, universal statistical test,
approximate entropy test, cumulative sums test, random
excursion test, random excursion variant test and serial
test.

Experiments: some of the tests, for example overlapping
template matching test, umversal statistical test, random
excursion test, linear complexity test and random
excursions variant test, require the sequence length to be
more than 1000000 bits and Rank Test requires the
sequence to be minimum 38,912 bits. Due to the hardware
constraint, we only provide 768000 bits (3000 sequences
of 256 bit) for the entire experiments, i.e., these six tests
were not performed. Thus the appropriate NIST tests are
only nine which are frequency test, block fre-quency test,
runs test, long runs test, cumulative sum test, approximate
entropy test, serial test, discrete Fourier transform test
and non-overlapping template matching test. Table 4
shows the breakdown of the 9 statistical tests applied
during the experiments.
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Table 4: Test ID for 9 NIST statistical tests
Statistical test

Approximate entropy

Block frequency

Cumulative sum

Frequency

Long runs

Runs

Serial

Discrete Fourier transform

Non-overlapping template matching

Test ID

U= RE - RV R R S

We use the same data categories as that used in
avalanche test. A full round of STITCH-256 1s run and
repeated many times. The sequences of 256 bit hash
values are concatenated to produce large data input to the
statistical test. We follow the same procedure as
described by Soto and Bassham (2000). The statistical
tests are applied only to the compression functions of
STITCH-256. It means that the padding procedure is
omitted. The output from the experiments 1s 9 results for
each data category. Statistical tests were performed using
the strategies as follows.

Finally, we show the avalanche effect of 32 rounds of
STITCH-256. This 1s depicted in Fig. 13. It 15 shown in the
figure that the avalanche factors for 32 rounds of
STITCH-256 have not much different from that of
16 rounds of STITCH-256. As 32 rounds incur more
processing and time, STITCH-256 employs only 16 rounds
with almost similar avalanche effect with 32 rounds. This
provides STITCH-256 with comparable efficiency and
security with other hash functions:

Step 1: For each data category, all input parameters such
the sequence length, sample size and significance
level were fixed They are defined as 256, 256000
and 0.01, respectively. For each binary sequence
and each statistical test, a p-value was reported
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Fig. 13: The avalanche factor for 32 rounds of STITCH-256

Step 2: The status of success or failure was made based
on whether or not for each p-value exceeded or
fell below the pre-selected significance level
Two evaluations were made for each statistical
test and each sample. Firstly, we calculated the
proportion of binary sequences in a sample that
passed the statistical test. The p-value for this
proportion 1s equal to the probability of
observing a value that is equal to or greater than
the calculated proportion. Secondly, we
calculated an additional p-value based on a %’
test (with nine degrees of freedom) applied to the
p-values in the entire sample to guarantee
uniformity

An assessment was made for both steps done in
step 3. A sample was considered to pass a
statistical test if it satisfied both the proportion
and umformity assessments. If one of the two p-
values in step 2 fell below 0.0001, then the sample
1s labeled as suspect. In this case, then additional
samples needed to be evaluated. Otherwise, the
sample 1s said to satisfy the criterion for bemng
random from the perspective of a specific
statistical test (Rukhin ez af., 2001)

Step 3:

Step 4:

Empirical results and analysis: Given the empirical
results for a particular test, we computed the proportion
of sequences that pass. In our case, we tested 1000 binary
sequences for each data category, i.e, m = 1000. The
significance level, 0, for our experiment is set at ¢ = 0.01.
We use the confidence interval formula defined by
Soto and Bassham (2000) as:

/p(l—p)
pt3 p
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Fig. 14: Proportion of low density sequences undergoing
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Fig. 15: Proportion high  density sequences

where p = 1-0. The data 15 classified as non-random
if the calculated proportion i1s not m this mterval In
our case, the confidence interval is 0.99+40.0094392.
This  means that the proportion should be above
0.980560. The calculated confidence interval is an
approximation to the binomial distribution which i1s
reasonably for m = 1000. Figure 14-16 show the proportion
of sequences that undergo nine statistical tests for each
of data category.
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Fig. 16: Proportion of random sequences undergomg 9
statistical tests

From the results of the experiments, it showed that
the outputs from the full round of STITCH-256 algorithm
appeared to be random for all nine statistical tests.

CONCLUSION

In this study, the avalanche effect of STITCH-256
algorithm was measured by testing 3000 sequences of
256 bit hash values. The empirical results from the
avalanche test showed that STITCH-256 exhibits Strict
Avalanche Criterion (SAC) which is a desired property
in any cryptographic algorithm. The contributing factors
to this property are the implementation of different
message orderings in each line in the compression
function of STITCH-256 and stitching permutation which
maximizes the diffusion property of STITCH-256. Fmally,
3000 sequences of 256 bit hash values of different data
categories were tested with NIST statistical test suites.
The tests spanned many well-known -cryptographic
properties which have to be satisfied by any
cryptographic algorithm. One of the properties mcluded
the absence of any detectable correlation between
mput/output pairs and also the absence of any detectable
bias resulting from a single bit flip m input. Nine statistical
tests were identified from the test swite that are relevant
with 256 bit output from any cryptographic algorithm and
run the test for three different data categories separately.
The proportion of p-values of the data sequences were
then computed and compared with the confidence
interval. The empirical results showed that the outputs
from three different data categories in full round of
STITCH-256 passed all the nine tests, i.e., appeared to be
random. From the avalanche and statistical tests
conducted, we showed that the claim made with regards
to high diffusion and random output of STITCH-256 1s
correct.
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