——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 13 (6); 790-799, 2013
ISSN 1812-53654 / DOL: 10.3923/1as.2013.790.799
© 2013 Asian Network for Scientific Information

A High Performance Protocol for Fault Tolerant Distributed
Shared Memory (FaTP)

"Mutasem Alsmadi, >*Usama A. Badawi and *Hosam E. Reffat
'Department of MIS, Collage of Applied Studies and Community Service,
Dammam University, Dammam, P.O. Box 40287, Al-Khobar 31952, Kingdom of Saudi Arabia
*Computer Science Division, Department of Mathematics, Faculty of Science,
Cairo University, Egypt
*Dammam University, P.O. Box 40287, Al-Khobar 31952, Kingdom of Saudi Arabia
“Department of Computer Science, El-Baha Private College of Science, Kingdom of Saudi Arabia

Abstract: In distributed environments, runtime failures often occur. If the distributed system has the ability to
handle such failures dynamically (within runtime), it is said to be fault tolerant. Such systems suffer from the
problem of bemng slow if compared to other non-fault tolerant systems. Moreover, if the system is based on a
Distributed Shared Memory (DSM) in exchanging data among the distributed application members, then it is
going to be slower and may be mefficient. In this study, a generic DSM based Fault Tolerance Protocol (FaTP)
is introduced. FaTP is a high performance fault tolerance protocol. The proposed protocol is based on the Linda
Tuple space DSM model. It introduces a compact set of DSM access priunitives and supplied with a fault
tolerance layer based on dynamic replication. The complexity of FaTP has been measured and its performance

has been evaluated.

Key words: DSM, fault tolerance, replication, distributed algorithms

INTRODUCTION

In Computational Intensive Applications (CILA), the
time needed to finish the required task is huge and hence
the possibility for failures due to network partitions or
machine crashes is high. Therefore, systems that enable
CIAs to run on top of them must introduce a way to
tolerate with runtime failures. Such failures may not only
lead to affect the performance in the whole implementation
processes, but also to stop the processes of the
application execution. One solution for this problem 1s
integrating a fault tolerance layer which gives a dynamic
detection and recovery mechamsms (Sorm, 2009,
Badawi, 2000, Gizopoulos et al., 2011).

A popular example of Distributed Shared Memory
(DSM) models is the Linda model (Sudhakar and Ramesh,
2012; Chen et al, 2011, Buyya, 1999; Fiedler ef al.,
2005; Carriero and Gelernter, 1989), that permit functions
to communicate via. introducing and restoring the data
items, which is called tuples, into a DSM called tuple
space. Any tuple in the tuple space can be accessed via.
read/write operations. Examples of the read/write
operations m Linda are () operation, which is used to
retrieve data from the tuple space and the out() operation,
which 1s used to msert passive data to the tuple space.

Fault tolerance DSM systems suffer from being slow
if compared to other DSM systems (Gizopoulos et al.,
2011; Buyya, 1999, Fiedler et al., 2005). Tlus slowness 1s
due to two reasons. Firstly, their nature as DSM based
systems which needs the existence of a thurd party and
shared memory; which increases the latencies of the
system. Secondly, the fault tolerance behavior of the
DSM systems. A possible way to enhance the
performance of such systems is to control the read/write
operations performance.

Badawi (2009) has mtroduced a fault tolerant
extension of PVM (parallel virtual machine), which is
appropriate for real time applications. Where the proposed
extension (TS-PVM) is based on the integrating of the
TRIPS system fault tolerance mechamisms in PVM. While
in this study, a generic DSM based fault tolerance
protecol (FaTP) 1s introduced. FaTP 1s a high performance
fault tolerance protocol, where the proposed FaTP is
based on the Linda Tuple space DSM model. It introduces
a compact set of DSM access primitives and supplied with
a fault tolerance layer based on dynamic replication. The
complexity of FaTP has been measured and its
performance has been evaluated. The proposed protocol
is based on dynamic replication. The read/write algorithms
are mtroduced and analyzed. Then, the complexities of

Corresponding Author: Mutasem Alsmadi, Department of MIS, Collage of Applied Studies and Community Service,
Dammam University, Dammam, Kingdom of Saudi Arabia

J. Applied Sci., 13 (6): 790-799, 2013

read/write operations algorithms are computed to measure
the performance. FaTP is a generic protocol and may be
applied to any DSM based system.

LINDA TUPLE SPACE MODEL

Linda model, which is introduced by Carriero and
Gelernter (1989), Gelernter (1985) and Buyya (1999), has
presented the tuple space concept. Tuple space is an
applied of the associative shared memory paradigm
attainable to all implementation processes. It consists
tuples, which may be recuperation data through their
contents instead of the physical addresses, through using
a certain pattern-matching mechamsm. The tuple space
memory implementation is hidden from the user and
thenmay be realized on a shared memory machine
(Ahuja et al., 1986; Setz and Fischer, 1997).

Tuple space structure: If a task is sending a message to
another task, it places the data in the form of tuple in the
tuple space. When the receiver task is ready to receive
this data, it retrieves this tuple form the tuple space. This
behavior decouples the send and receives
communications so that the sender task doesn’t have to
block until the receiver is ready to receive the transmitted
data. Tuples can be active or passive. Where active tuples
will consist at least one value which is not evaluated. All
the values in passive tuples are evaluated. Each tuple in
the tuple space contains a sequence of data elements of
basic types such as integers, floats, characters and arrays
(Hari, 2012).

Linda introduces six primitives to access the tuple
space. The out() primitive takes a sequence of typed
expressions as arguments, evaluates them, and inserts the
tuple into tuple space. Similar to out(), eval() creates a
tuple from its arguments, but a new process 1s created to
evaluate the arguments. in() and rd() primitives take data
types as their arguments and retrieve a tuple to match its
input. The main difference between in() and rd() is that
rd() reads the tuple only from the tuple space while in()
takes the tuple from the tuple space. Beside in() and rd()
which are blocking versions, Linda model has introduced
inp() and rdp(), which are non-blocking primitives.

Generally, the available research implementations of
tuple space concept distinguish between passive and
active data, and therefore introduced operations for
passive date such as in() and out() and an operation for
active data (processes) which is eval(). In the proposed
FaTP, objects are the main items in the space. where the
object contains both data and code, hence there is no
need to have different read and write sets of operations.
Therefore, the in() and out() versions in this prototype
deal with both passive and active data. Figure 1 shows
the different operations supported by the modified Linda
model.

791

usa (a,b.c) Out (logicl, i, 5)

No block!!
inp (logic, L.b) Copy taken
\ ; A
............... Object space rd (Logicl,Lb)
&
rdp (Logic2,I,b) Bolck!!
No block!!
«
In (Logic,1, @a)

Fig. 1: Object space primitives

Tuple matching is done by creating a template from
the passed pattern, which is an argument of the retrieval
primitive. Tuples existing in the tuple space are then
matched against this template until a matched tuple is
found. Tuples and templates consist of three parts: Togic
name, list of types, and list of variables. In templates,
variables are separated to two types. Uppercase entries
indicate formal variables; which are used in retrieval
primitive to indicate “any value” for tuple fields.
Lowercase letters indicate actual variables; which define
a value that the matching tuple is assumed to have at the
corresponding entry. Tn order to find a match, the template
and the tuple must have equal logical names, equal
cardinality, the same data types, and the same values in
the corresponding actual fields.

The tuple space implements a true set of tuples, that
is, it may contain several copies of identical data tuples.
A given template may match several data tuples present
1n the tuple space. The matching algorithm is then allowed
to return an arbitrary matching tuple (Setz and
Fischer, 1997; Hari, 2012). Figure 1 shows an example of
the matching process. The tuple (logicl, i, 5) is inserted in
the tuple space using the out() primitive and has been
matched and retrieved by the template (logicl, T, b) using
the primitive rd().

Tuple space implementations: There are many exist
implementations of the tuple space model such as the
tuple space implemented by LiPS system (Library of
Parallel Systems), SUN JavaSpaces system, and TBM
TSpace. In this section, the T.iPS tuple space is introduced
as a good example of a tuple space with fault tolerance
capabilities (Hari, 2012; Van Heiningen et al., 2006).
LiPS Tuple-Space is implemented using linked lists. Tt
consists of three basic data structures; these are T Space,
for the tuple space, SSpace, for the sequence space and
ESpace, for the event space. Figure 2 illustrates how these
data structures work and hold real data tuples. The first

J. Applied Sci., 13 (6): 790-799, 2013

ISpace

OSpace

Objectl

[1]

Object insert
Ack.

Event Ack. _|

[v

Fig. 2: An object space implementation

linked list, the TSpace, holds the tuple actual data. Tt is
implemented as a double linked list. The SSpace puts
another view on the tuple space according to the
sequence numbers of tuples by which each tuple has a
unique identifier in the tuple space. However, the ESpace
holds the message log of the application processes in
single linked list called lock. A lock contains the identifier
of the application processes, its event number, the type of
the operation, and the sequence number of the tuple
related to that event.

The SSpace and ESpace are implemented for the
recovery purpose in case of faillure. The log, m ESpace, 1s
needed in case of accessing a tuple during the recovery
an application process. The sequence number of the
correlated tuple is found in the event space and then the
tuple is possible to be accessed. If a tuple is called by
using in() or inp() operations, it is removed from the
double linked lists only. If there are no more references to
a tuple with a given sequence number in the event space,
the tuple is first removed from the sequence space and
then removed physically (Buyya, 1999).

FAULT TOLERANT PROTOCOL (FATP)

The input/output operations, such as in(), out() and
eval(), play an important role in the system performance.
If the system tolerates with runtime failures, then it should
introduce detection and recovery protocols. The time
measure of these protocols is huge if compared to the time
of other parts of the system (Lazr, 2001; Liang et al., 201 2).
In this section, the general structure of a fault tolerance

"""""" Identifier
\ J | assigned
)
Object2
~—
R
N

792

ESpace (message log)

DSM system is introduced as well as the insert/retrieve
primitive’s algorithms.

FaTP structure: The proposed protocol, FaTP, includes
many layers. A group communication layer is integrated
to enable message broadcasting among the distributed
application members. This layer is also responsible for
reporting changes m the group configuration such as
machine crashes, machine join, or even network partitions.
Moreover, a high availability layer has been implemented.
This layer includes the detection and recovery protocols
to handle different types of changes in the group of
distributed processes. These two layers must be
integrated in the lower level of the DSM. All types of
changes, namely tuple space changes or group
configuration changes must be performed through these
two layers. Figure 3 shows a typical fault tolerant DSM
system structure.

As shown in the figure below, an acknowledgment is
sent to the high availability layer, as soon as changes will
be oceur in the DSM or in the group configuration.

View change handling protocol: The high availability
layer constructs the View Change Handling protocol
(VCH) that increases the system availability. Normally,
there exist many running tuple spaces per application.
Some of these spaces are active and others are passive.
One of the active spaces 15 the original space, which 1s
called the replica and the others are identical copies of the
original space.

J. Applied Sci., 13 (6): 790-799, 2013

Machinel Machine2
Application
Q Q processes
In() Out()
DSM changes

DSM change conf. | DSM change Ack.

I v
Hight availability layer
(view change handling protocols)
I Conf. change Ack. |-———____.

Configuration
changes

] Hight Av. layer

Group communication layer
(configuration change dtection protocols)
|
v [

Network layer

Fig. 3: A generic fault tolerant DSM system

Algorithm 1: View change Handling algorithm
Repeat:
Blocking until receive a new message;
If the received messagee is regular message then
Move control to Object thread.
else
If i am the replica then
Broadcast my object space to others.
else if I am newly started then
If T am the only menber in the group then
I will be chosen as a replica for the current group

elsIefI have an empty object space then
Get a copy of the object space
else
Kill my self.
end
end
if I am old and there are leaving nodes then
if replica still alive then
I will get notification with the leaving member

else,

else
Chose a new replica.
end
else if T am lod and there are new joined nodes then
If T am a replica then
Send object space copy to new members.

else
Move control to object space thread
end

end

end

end

end
Until forever;

Fig. 4: View change handling algorithm

The VCH is responsible for spreading the effect of the
client operations in all active spaces. If the client writes a
tuple in the system, the protocol replicates this entry in all
active spaces and ensures that all spaces are identical.
Moreover, it is responsible for managing the spaces

793

failures. Tt performs the client operations in the active
spaces. If any active space is failed, the client will never
notice system changes. The VCH failure recovery
algorithm is shown in Fig. 4. This algorithm is based on
the dynamic replication mechanism. Fault tolerance is

J. Applied Sci., 13 (6): 790-799, 2013

Out()

Ve

™

[Put-object-to-local-space() H Assign-1d-Nr()]—>[Insert-event()]

\Local object space layer

| DSM change conferm |‘

| Object insert ack |
f

CAII-VCH()

©)

KHigh availablity layer

More conf
change?

| Conf. change ack. |

f

Check-conf()

@roup communication layer

Fig. 5: Out () primitive control flow

achieved by making identical copies of the tuple space to
the still alive members (current group configuration) and
to make sure that these copies are identical all the time.

Input/output algorithms: In order to study the behavior
of a given system, it 1s important to trace the functionality
of its imputioutput primitives. In this section, the
input/output algorithms for fault tolerant DSM are
introduced.

Out() algorithm: Figure 5 shows the out() priumitive
control flow. Tt is clear that most of the time is elapsed in
the high availability layer. This layer includes a loop that
depends on the number of view changes occur
Moreover, it 1s clear that the tuple space will not confirm
its operation unless a confirmation message arrives from
the high availability layer.

As shown m the figure, the local tuple space layer
mcludes methods to msert tuple in the tuple space, assign
sequence number to the tuple, and insert the event in the
event space. These steps are sequential and require
minimal time. After fimshing the steps in the local tuple
space layer, an acknowledgment is sent to the high
availability layer that includes the VCH protocol. The
protocol checks for membership configuration changes;
from the group commumcation layer, and tuple space
changes, from the local tuple space layer.

The change-confirm() method is called in case there
is no new configuration changes. This method sends the
new tuple space view to the group commumication layer
to be broadcasted to all members n the group. Then, a

794

confirmation message is sent to the local tuple space layer
to commut the tuple space operation.

The m() primitive behaves in a different way. It 1s
needed, in this case, to check the tuple space for the
existence of the requested tuple. The matching mechanism
15 applied to match the template with existing tuples.
Figure 6 shows the m() prunitive control flow. As shown
in the figure, the Find-Tuple() method is called as soon as
the template of the required tuple is inserted to the tuple
space. This method mcludes the matching protocol to
check the existence of matching tuples. If a match found,
the event is inserted in the event space and a tuple delete
acknowledgment 1s sent to the high availability layer.
Otherwise, the operation is blocked until a match exists.
Similar to the out() primitive case, configuration changes,
if exist, are handled. The tuple is deleted from the local
tuple space physically after a confirmation message from
the high availability layer i1s delivered. This algorithm
could be applied for the rd() primitive as well.

MEASURING THE COMPLEXITY

To analyze the system performance, the complexities
of the input/output primitives (out() and in()) have been
measured. The recovery time has been calculated as well
(Sudhakar and Ramesh, 2012).

Out() primitive complexity: The FaTP protocol
broadcasts the write (out()) to all still alive active spaces.
The required time to perform the write operation can be
expressed by Eq. 1:

J. Applied Sci., 13 (6): 790-799, 2013

In()

A 4

[Send-template-to-local-space() H Find-Object()

Local object space layer

~

| Object delete Ack. |

A

y

4

High availablity layer
% gl y lay!

©)

CAII-VCH(

| Conf. change ack. Tj

/

Conf
change?

Check-conf()

\Group communication layer

Fig. 6: In() primitive control flow

Tt = Tt TigtT (1
where, T. is the time required to transfer the write
operation from the client to the VCH layer. T is the time
required to broadcast thus operation in all active spaces.
r 18 a summation of the time required for all active spaces
in the system to perform the write operation. T, can be
expressed as follows:

E
= o«L,, <l 2
Smtx(liLml,c)) netc< ()

where, E is the entry size in bytes. 3, is the speed of the
network mfrastructure. L, 15 the load of the network
infrastructure when the client sends the write operation to

the Spaces manager server.
Let:

K= L (2a)

Then, T, can be expressed as follows:

ExK
= c 3
o) ()

net

Moreover, T, can be expressed as follows:

& E 4
’I‘Sp_ésm|x(171’m"i) ()

795

where, L, 1s the load of network mfrastructure during
transferring the write operation from the Spaces manager
server to the ith active space.

Let:
KoL
- (1 7Lm|,1)
and:
vK 4a
Ku=2 0 (4a)
Then, T, can be expressed as follows:
T, = NxExK,, (5)
Srat
The time required for all active spaces to

perform the write operation can be calculated as

follows:

=0T (&)

Since, all active spaces in the system are identical and
the same entry will be written m all active spaces,
therefore, assuming that, all active spaces take the same
time to perform this write operation. According to this
assumption, Eq. 6 can be written as follows:

J. Applied Sci., 13 (6): 790-799, 2013

(6a)

T=Nx1

From Eq. 3, 5 and 6a, could be calculated as
follows:

ExI,
S,

NxExK,,
4R P
S,

(7)

T +N+1T

wile

et net

From Eq. 7, it is noticed that, the total time to perform
the write operation depends on the entry size, the number
of active spaces, the network speed, the network load and
the time taken to perform the write operation in the DSM.
Assuming that the network speed is constant. Then, the
complexity of write operation in dynamic replica is as
follows:

(&)

OEX(K, +NxK_)+N+1)

Tn() primitive complexity: The total time to perform take
(in()) operation m dynamic replica can be expressed as
follows:

)

T,

e =T+ T, 4T, + T, + T,
where, T. is the time required to transfer the take
operation from the client to the dynamic replica server. T
15 the time required to the dynamic replica system to
execute this operation. Since, of the take operation is
broadcasted in all active spaces, therefore, r,,. equals to
the summation of take operation in all active spaces and
T, 1s summation of time to retumn the results from the
active spaces to dynamic replica server. Also, T, is the
time required to return the result to the client form the
dynamic replica server. Hence, T, can be written as
follows:

or

ExK

(10}

net

where, K has the definition of K, in

(2a).
T,, 1s summation of the transferring time of the take
operation template to all active spaces. Thus, T, could be

same

or

written as follows:

(1

H E
*Zsmtx(l—Lw)

i=l

T

Let:

796

F-Ly)
and:
¥ K
=5 i 12
Ko =25 (12)
Then, T, can be expressed as follows:
Lp:% (13)
The total time to perform the ()
operation inall active spaces can be written as
follows:
e =38 (14)
i=l

Since, the taken entry from all active spaces is
identical and all active spaces are identical, it could be
assumed that the in{)operation tales the same time in all
active spaces, then:

(15)

T, = NxT

The time required to retumn the taken entries from
active spaces to the Spaces manager server (T,) can be
written as follows:

NxExK, ..
= Tt] (16)
Where:
_s L) (17)
K = Zl N

The time required to return the result to the client
from the Spaces manager server (T,.) can be written as

follows:
-2 (18)
SIE(
Where:
1
_ 19
* Snel x (1 - Lg;) ()

J. Applied Sci., 13 (6): 790-799, 2013

Then, from Eq. 13, 15, 16 and 18. Eq. 9 could be
written as follows:

7E><KH+N><E><K

T, spar
Bt 8. (20)
. NxExK, . E+K
+N =1 +7j‘+s—“

net net

Then, the in() operation complexity is:

ON*T +NxExK, . +ExK,) (21)

LT

FaTP MEASURING AND RESULTS

Hence, practical tests are introduced to evaluate the
FaTP system. First, the test environment and techmque
are introduced. Then, the tests and their results are
presented.

Test environment and technique: The measurements are
performed by using six PC’s each with a CPU of type Intel
Pentium 2.4 GHZ. The inter-communication among the
machines is done through 100 Mbps Ethernet. Windows
XP professional 1s the used operating system. A

fault-tolerance test that is more associated to the dynamic
replica is introduced. This test is based on testing the
system fault-tolerance and the recovery time. Other types
of tests have performed to measure the performance of the
proposed protocol by testing the DSM access operations
for insertion and retrieval, namely out() and in()
respectively.

FaTP fault tolerance test: In this section, it is shown that
the system tolerates with failures. This could be achieved
by applying the following scenario. A client puts a
counter in the system. It is an entry that contains an
integer. The client procedure writes the entry, takes that
entry, increases the counter by 1 and then rewrites the
entry with the new value.

The client repeats these steps in a large number of
iterations. While the client is doing this process one of
the active spaces is enforced to fail. If the client process
survives in spite of the failure, and the counter increases
correctly, then improved that the service is fault tolerant.

Figure 7 shows the test skeleton code. The test loop
is infinite. The written entry is taken to be increased and
is rewritten again with the new value.

Figure & shows the output of the pervious test. Part
(A) shows output messages of the entry counter value

While (true){

}

Space.write(Entry Counter);

Entry Counter = Take(tmp);

Entry Counter.value = Entry Counter. Value +1;
Write(Entry Counter);

Fig. 7: Fault tolerance skeleton code test

A

Writing EntryCountry.value = 42
Taking EntryCountry.value = 42
Writing EntryCountry.value = 43
Taking EntryCountry.value =43
Writing EntryCountry.value = 44
Taking EntryCountry . value = 44
Writing EntryCountry.value = 45
Taking EntryCountry.value =45
Writing EntryCountry.value = 46
Taking EntryCountry . value =46
Writing EntryCountry.value = 47
Taking EntryCountry.value =47
Writing EntryCountry.value = 48
Taking EntryCountry.value =48
Writing EntryCountry.value = 49
Taking EntryCountry.valu e =49
Writing EntryCountry.value = 50
Taking EntryCountry . value = 50
Writing EntryCountry.value = 51
Taking EntryCountry . value = 51
Writing EntryCountry.value = 52
Taking EntryCountry.value = 52

B

active space 1 exists
active space 2 exists
active space 3 exists
passive space 1 exists
passive space 2 exists
passive space 3 exists
active space 1 not-exists
active space 2 exists
active space 3 exists
passive space 1 exists
passive space 2 exists
passive space 3 exists
copying active space 2 to passive space 1
converting passive space 1 to active space 1
active space 1 exists
active space 2 exists
active space 3 exists
passive space 1 not-exists
passive space 2 exists
passive space 3 exists
active space 1 exists
active space 2 exists

Fig. 8 Fault tolerance test results

797

J. Applied Sci., 13 (6): 790-799, 2013

300000 -4~ Repair time for entry size 1k

—*= Repair time for entry size 2k
250000

353
=3
=3
(=3
=3
=)
1

150000

ecovery time

2100000+

50000

200 300 400 500 600

Entry array size

(B '
0 100

Fig. 9: Recovery time measurements in the FaTP

6001

-a- Two active machines
-e— Four active machines
- Three active machines

500

400

3004

Time taken

200

1001

0

T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000

Entry array size

Fig. 10: Performance of out() operation in different cases
(two, three and four active spaces)

14009 =~ Two active machines

—+— Three active machines
—e— Four active machines

1200 1
1000
800
600

Time taken

400
200
0

T
2000 4000 6000 8000 10000 12000 14000 16000
Entry array size

0

Fig. 11: Comparison between the write-take (out()-in())
operation performance for two, three and four
active spaces

while writing and taking entry. The second part of the list
(B) shows the tracing output messages. The output
messages indicate the still alive active or passive spaces.
While writing the entry that contamns counter value equals
47, the first active space 1s enforced to fail. The FalP
protocol chooses passive spaces 1 to be the new active
spaces. Then, the dynamic replica service copies entries
from one of the still alive space (active space 2) to the
passive spaces 1. Fmally, FaTP service converts the

798

passive spaces 1 to active spaces 1 and blocks the object
of passive spaces 1 (not exist).

Measuring recovery time: The recovery time of the FaTP
has been measured. The time taken to recover a failure in
one of the active spaces equals the time required to copy
the system entries from one of the still alive active spaces
to one of the passive spaces plus the time required to
convert the passive space to an active space. The most
effective parameter in the recovery time is the number of
entries in the DSM. In this test, different number of entries
have been used with entry sizes 1 and 2 kbytes.

Figure 9 shows the recovery time curves. From the
figure, it is noticed that the recovery time increases
non-linearly by increasing the number of entries in the
system. The recovery time in case of entry array size
equals 2k bytes is greater than the recovery time in case
of entry array size equals 1k.

Hence, the recovery time mcreases by increasing the
entry size. In the small number of entries the recovery time
curves are very close.

Performance tests: This section evaluates the effect of
the number of active spaces on performance. This 1s done
by testing the DSM access operations.

Figure 10 shows the out() operation performance in
the different cases (two, three and four active spaces).
This figure shows that the performance of the out()
operation decreases by increasing the number of active
spaces in the system. This is because the out() operation
1s applied in all active spaces. The difference among the
three curves (two, three and four active spaces) 1s small at
the small entry array size. The difference among the three
curves (two, three and four active spaces) 1s small at the
small entry array size. Figure 11 shows a comparison
between the write-take (out()-in()) operation performance
for two, three and four active spaces.

From the above figure, the four-active-spaces curve
15 the noisiest curve. This noise 15 due to the fact that
increasing number of machines (active spaces) leads to
communication increment. Moreover, the difference
between two and three-active-space curves is smaller than
the difference between three and four active space curves.

CONCLUSION

Distributed shared memory systems suffer from the
problem of being slow if compared to other systems such
as message passing ones. The situation would be more
problematic if the system is a fault tolerant system. In this
study, a high performance fault tolerance protocol, FaTP,
has been presented. The proposed protocol deals with

J. Applied Sci., 13 (6): 790-799, 2013

distributed shared memory based applications. Tt is based
on the idea of integrating a high availability layer in the
distributed system. Such layer 1s responsible for handling
different changes either in the shared memory contents or
in the group configuration. Tt guarantees the consistency
of the shared memory contents among all members in the
distributed application. FaTP enables the distributed
application to tolerate with the failures in a reasonable
timing.

FaTP structure and behavior are
Moreover, the behavior of the distributed shared memory
access primitives (read and write operations) is analyzed
and the complexities of such primitives have been
calculated. Then, the proposed protocol functionality and
performance have been measured. Experimental results
have shown that FaTP operates properly. It has also
shown that its recovery time 1s reasonable.

introduced.

REFERENCES

Ahuja, S., N. Carriero and D. Gelemter, 1986. Linda and
friends. TEEE Comput., 19: 26-34.

Badawi, U, 2000. A smgle system image supporting
distributed objects. Ph.D. Thesis, Department of
Mathematics, Faculty of Science, Cairo University,
Egypt.

Badawi, U, 2009. TS-PVM: A fault tolerant PVM
extension for real time applications. Int. Arab J. Inf.
Technol., 6: 424-430.

Buyya, R., 1999, High Performance Cluster Computing:
Programming and Applications. Vol. 2, Prentice Hall
PTR, USA., ISBN-13: 9780130137852, Pages: 664.

Carriero, N. and D. Gelernter, 1989. How to write parallel
programs: A guide to the perplexed. ACM Comput.
Surv., 21: 323-357.

Chen, X, Z. Lu, A. Jantsch and S. Chen, 2011. Supporting
distributed shared memory on multi-core
network-on-chips using a dual microcoded controller.
Proceedings of the Conference on Design,
Automation and Test in Burope, March 8-12, 2010,
Belgium, China, pp: 39-44.

Fiedler, D., K. Walcott, T. Richardson, G M. Kapthammer,
A, Amer and PK. Chrysanthis, 2005. Towards the
measurement of tuple space performance. ACM
SIGMETRICS Perform. Eval. Rev., 33: 51-62.

Gelernter, D., 1985. Generative communication in linda.
ACM Trans. Programm. Languages Syst., 7: 80-112.

Gizopoulos, D, M. Psarakis, 5.V. Adve, P. Ramachandran
and S.K.S. Han et al., 2011. Architectures for online
error detection and recovery in multicore processors.
Proceeding of the Design, Automation and Test in
Europe, March 14-18, 2011, Grenoble, France.

Hari, H., 2012. Tuple space in the cloud. Master's Thesis,
Department of Information Technology, Uppsala
University, Sweden.

Lazr, I, 2001. Desigming a fault-tolerant jimi compute
server.http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.19.3916

Liang, G., B. Sommer and N. Vaidya, 2012.
Experimental performance comparison — of
Byzantine fault-tolerant protocols for data

centers. Proceedings TEEE INFOCOM, March 25-30,
2012, USA., pp:1422-1430.

Setz, T. and J. Fischer, 1997. Fault-tolerant distributed
application in LIPS, Techmical Report SFB 124
09/1997, University of the saarland at Saarbrucken,

Germany.
Serin, D.J., 2009, Fault Tolerant Computer
Architecture. Morgan and Claypool Publishers,

USA., ISBN: 9781598299533, Pages: 103.

Sudhakar, C. and T. Ramesh, 2012. An improved DSM
system design and implementation. Int T
Next-Generation Comput., Vol. 3.

Van Heiningen, W., T. Brecht and 5. MacDonald, 2006.
Babylon v2.0: Middleware for distributed, parallel and
mobile Java applications. Proceedings of the 1lth
International Workshop on High-Level Parallel
Programming Models and Supportive Environments,
April, 2006, Rhodes Tsland, Greece.

799

	790-799_Page_01
	790-799_Page_02
	790-799_Page_03
	790-799_Page_04
	790-799_Page_05
	790-799_Page_06
	790-799_Page_07
	790-799_Page_08
	790-799_Page_09
	790-799_Page_10
	JAS.pdf
	Page 1

