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Abstract: Based on the Internet of Things, the achieving of the dynamical mformation about the logistical
network becomes a practical matter. With enough information utilizable, the deeply optimization of the logistical

service is more possible. In this study, the static and dynamic information of the logistical network for goods
dispatching is reformatted. Integrated with the particle swarm optimization algorithm, an optimization model
utilizing the algorithm of the Hamming competitive neural network 1s proposed. In the logistical model, the
particle swarm algorithm is used to implement the optimization to the logistical services based on the complex

logistical network. In order to reduce the time cost of the particle swarm algorithm, the hamming neural network

algorithm 1s put forward to mvolve the iteration procedure. Simulative experiments demonstrate that the

proposed model can not only reduce the time cost of the optimization procedure but also 1s effective to achieve

optimized service scheme.
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INTRODUCTION

With the development of the technologies of the
Internet of Things and the logistical network, the
mformation about more categories can be achieved and
comprehensively utilized in an integrated information
system (Ning and Wang, 2011; Mulligan, 2010).
Supported by the superior available of the logistical
network, the applications to the logistical services based
on the technologies become one of the hot research spots
(Grandinetti ez al., 2012; Creazza et al., 2012). Based on the
integrated logistical information (Amaya et af, 2010)
describe a solution procedure for a capacitated arc routing
problem with refill points and multiple loads. By
presenting an integer formulation and a route first-cluster
second heuristic procedure, the proposed model can
simultaneously determine the vehicle routes that mimmize
the total cost of the two vehicles.

Utilizing the static and dynamic information of the
logistical network, Perugia ef al. (2011) put forward a
solution to the home-to-work bus service in urban zone.
TIn the solution, a model with a cluster routing algorithm is
designed to scheme the routing and the bus stop location
based on the real-time mformation achieved from the
metropolitan transportation networks. By the search
algorithm, the restrictions about efficiency, equity and
effectiveness come to an equilibrium state.

In contrast to search feasible scheme utilizing the
integrated logistical information, the exploring of the
optimization solution is ancther key application in the
research of the logistical service (Leiva et al, 2010;
Iyoob and Kutanoglu, 2013). To the logistical service with
multiple categories of elements involved, the design of the
optimization algorithm is usually very complicated work
due to the complexity of the logistical mformation
(Miranda and Garrido, 2009; Pishvaee et ai., 2010). In
consideration of constraing relative to riding in the urban
routing networks, a framework 1s put forward to achieve
a set of Pareto-optimal feasible solution by Chang and
Yen (2012). Utilizing the information about the urban
routing network, the city-courier routing and scheduling
problem is transferred into a multiple routing salesman
problem with multiple objectives. In order to decrease the
expenditures relative to school operations and student
transportation, Mandujano et ol (2012) proposed an
optimization scheme, in which a methodology with two
mixed-integer programming models 13 used to reduce
transportation costs by optiunize the transportation of
students and the location of the schools for the
designated area. In order to meet the coordination
requirements of a supply chain, Yildiz et al. (2010)
proposed a modified mixed-integer programming
methodology, by which the probability to reduce the cost
of distribution is enhanced.
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By comprehensively analyzing the algorithm
mentioned above, it is the common insufficiency that the
time cost of the optimization procedure increases rapidly
and unevenly with the dimension mcreasing of the
logistical network. To solve the problem, an optimization
model based on Hamming competitive neural network is
put forward. In the proposed model, the goods
dispatching requirement of the logistical service is
formulated by the combination of preconditions. Then a
input vector is reformulated by the combination of
preconditions and taken as the mput data to the modified
particle swarm optimization algorithm with the Hamming
competitive neural network algorithm involved. Simulative
experiments indicate the proposed model is efficient and
effective to the optimization of the logistical service.

DESCRIPTION TO THE STATIC AND DYNAMIC
INFORMATION ABOUT THE LOGISTICAL
NETWORK

To implement the logistical services, the goods ready
to be delivered distributed in the service spots should be
loaded and dispatched by proper transport utility and
route selection. The service spots and the routes
connected with the service spots consist of the backbone
of the logistical network (Song and Dong, 2012). The set
S = (s, 85, ..., 8,) represents the set of the service spots.
Figure 1 represents a logistical network with eight service
spots and ten routes. In the figure, &) denotes a service
spots in the backbone of the logistical network and <
expresses the route between two service spots. When a
pack of goods 1s required to be dispatched from a service
spot to another, a proper routes combination through
which the pack of goods can be transported to the
destination can be selected by certain approaches. For
example, the routes combination for the pack of goods
which should be dispatched from the service spot S; to
the service spot S, can be S,—3—8, S,75,—5, or
3,75, ~3,73,—S; according to the selection strategies.

Correspondingly, the dynamic information of the
logistical networl consists of not only the back bone but
also the goods distribution at the service spots and the
real-time information of the transport utilities with goods
at the designated time. In Fig. 2, the dynamic information
of a certain time point is shown as an example of the
running logistical network. Tn the figure, the denotations,
<> comecting to@) describe a pack of goods waiting at
a service spot 3, and to be dispatched to the destination
S, Accordingly, the denotation f&>-, which is at the route
between the service spot 8, and S,, represents a transport
utility with or without goods moving from the service spot
3, and 3, by the route between them.
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Fig. 1. Logistical network with eight service spots and
ten routes

Fig. 2: Dynamic state of the logistical network at certain
time point

CRUCTAL FACTORS ABOUT THE LOGISTICAL
SERVICE OPTIMIZATION

The service spots take charge of the receiving and
dispatching of the goods m the logistical network. In the
two figures above, the basic information about the
logistical service scheme designing is represented in
detail.

In order to comfort to the requirement of the
algorithm and service scheme designing, the packs of
goods are expressed specially. In the proposed model, a
pack of goods being dispatched from one service spot to
another 1s expressed by three parameters. The first and
second parameters are the service spot of departure and
the service spot of destination, respectively. The Carrying
Capacity Requirement (CCR) of the packs of goods is
taken as the third parameter.
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The CCR can be the unit of weight or bulk. For sake
of expressing comprehensively, The CCR is put forward
to describe the carrying capacity requirement of goods
uniformly. As an integrated logistical networls, the
relationship among the service spots and the packs of
goods being dispatched can be represented by a matrix as
follows:

—_
Cor
—
TS
&)
—_

In the matrix, I; denotes the CCR of goods which will
be transfer from the service spot s, to the service spot s,
The matrix which is named as [M,],., can integrated
express the requirement of the goods being dispatched.
For a designated period of time, the goods in the logistical
network is determined and can be described by a set
G =(g;, g - ). Let G} denote the subset of G which
consists of packs of goods with the service spot of
departure S; and the service spot of destination S and
cer (g;) is the CCR of the g;, then 1, can be represented as:

lxj = 2, cer(g)

i
et

(1)

In order to implement the task of the goods
dispatching, the states about the transport utilities are
also key parameters. As the carrying capacity of all the
transport  utilities usable is constant,
distribution and the goods on loading of the transport
utilities will influence the designing of the proper scheme
for the goods dispatching. Let the set T = (t,t, ..., t,)
represent the available transport utility set of the logistical
network. For the sake of meeting the mnformation
requirement of the transport utilities for the logistical
service scheme designing, the vectors V, and V_ are put
forward to represent the location distribution and the
goods on loading of the transport utilities:

the location

V,=[sh 858 , 57

V=150, .,

In the vector V,, the element s' means the transport
utility with the order number 1 1s going to or at the service
spot with the order nmumber s'. To meet the need of
convenient denotation, s' represents a order number of a
service spot and i is the order number of the transport
utility. If s' is the order number the service spot s, then
the value of the s' is j. In the vector V, the element I’
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means the CCR of the goods on loading of the transport
utility with the order number i. To comprehensively
represent the carrymng capacity distribution of the
logistical network, the information of the vectors V, and
V. can be fused into the following vector:

Ve=[f, £, fi,

In the vector V, the element f represents the carrying
capacity available at the service spot s; during the
designated time period, which 1s the comprehensive
information of the transport utilities going to or at s; and
the CCR of goods on loading of the transport utilities.

Summarily, the matrix [M;],., and the vector V;are
preconditions to the drawing up of the logistical service
scheme. Consequently, the matrix and the vector can be
taken as the crucial information to the logistical service
optimization.

OPTIMIZATION MODEL TO THE
LOGISTICAL SERVICE

Algorithm for the optimization of the logistical
services: At a designated time pomnt, given the real-time
information of the logistical network, there are usually a
great many feasible service schemes to accomplish the
task of all goods dispatching. The optimization of the
logistical service 1s the procedure of searching for the
proper service scheme with cost expenditure as small as
possible. The cost expenditure mainly depends on the
moving distance and the per umit distance cost
expenditure of every transport utility. To the service
scheme designing, accomplishing all tasks of goods
dispatching 15 a basic constraint. For the sake of
representing the basic constraint, the following
sequences are put forward to denote the CCR of the
goods loading on and unloading from the transport utility
t; with time going on:

o(t)), ot ), 0(t] )...coe,
A, A3, d(t?), ... d(t5H), d(t5), ..o

With the logistical network running on ceaselessly,
the transport utility t; loads and unloads the packs of
goods and the sequences above are achieved in order. To
conveniently describe the service scheme, every two
elements of the two sequences with identical order
number make up a pair. For example, pit*) = (o(t*), d(t})) 18
pair to represent the CCR of goods loading on and
unloading from the transport utility t; at a certain service
spot. For meaningfulness, the two elements of a pair
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should not be zero simultaneously. That one element of a
pair i3 zero means either loading or unloading is taken
place.

Based on the denotaton above, the goods
dispatching constraint can be represented as follows:

>, of(t)y=relay, + 31, x=12 ..., n (2)
P () €5 () ¥l

3 d{t!y=relay, + anlkx, x=L2...., n 3
JICIEL) k=1

Let P denote the set of pairs which the transport
utilities will generate in the designing service scheme. In
the above equation, S, (p) is the subset of P which
consists of the pairs generated at the service spot S,. The
denotation relay, expresses the CCR of goods will be
relayed by the service spot S,. In other words, relay,, the
CCR of goods relayed from 3, 1s unloaded by some
transport utilities and loaded by others to relay on. The
relay of the goods plays a role in better utilization of the
carrying capacity of the transport utilities. Tn order to
simplify the description of the constraint, let Eq. 2 be
subtracted by Eq. 3 and then:

YA =

p (i) ese(p)

z

pi) s ()

ot YL Yl x=12....0(4)
y=1 k=1

The carrying capacity of every transport utility is
another constraint when the packs of goods are unloaded
and loaded at every service spot. The constraint can be
represented as follows:

Yo(?) - A <Cap(t,). Yu, p(ty) (%)

1s a pair in the service scheme desigmng.

In the designed service scheme, every packet of
goods is transferred by the relay of the transport utilities
and moves from one service spot to another by in order.
Consequently, the transport utility a pack of goods being
loaded on and the packs of goods a transport utility
loading on 1s probable to change. G (%, s,) represents the
set of the packs of goods being loaded ont when
t leaves from s, to another service spots and then the
variation of the set of the packs of goods being loaded on
t, in a designed service scheme can be expressed by a
sequence as follows:

Seq (t) =G (t, 8,0, G (t,8,,), ... G (t, 8,0, 1 <i<m, 1 <j <n

Accordingly, in the designed service scheme, a pack
of goods g, with the service spot of departure s, and the
service spot of s, destination should be appeared in such
a sequence as:
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G (tﬂ: Sjl)) G (t12: sz):

E] G (tic: de): 1 gixgma 1 g_jygn
Meanwhile:

P=is 4= s (6)

Let Dis (s, s;) represent the distance between the
service spots s, and s, and then the cost expenditure only
considering the sum distance of all transport utilities can
be expressed as:

Scost:i > (M

Dis(s, .58, )
=16 0y 505800

In the equation above, G (t, s, )ESeq (t) is the
sequence of the sets of the packs of goods t being loaded
on during the designed service scheme without the last
element of the sequence.

From the representation of the constraints and the
equation of the cost expenditure, the designing of the
service scheme 1s related to complicated arithmetic and set
operations. To accomplish the optimization by the proper
service scheme selection, the Particle Swarm Optimization
(PSO) algorithm 15 chosen In the PSO algorithm, the
selected service scheme 1s represented as the solution
vector space (Selleri et al., 2006). By the overlapping
generations from one feasible service scheme to other, the
optimized scheme will be achieved. The following are

equations for overlapping generations of a particle in the
PSO algorithm:

‘ﬂfp[i] {t+1)= ‘ﬂlp[i] {th+e 1it) (PbEStp[i] (t)_)—(p[ﬂ
(t))+ ¢, (t)(ghbest (t)— ip[i] (t))

(8)

R D=V (t+ D+ %, (1) (%)

In the equations, p [i] represents a particle. ¥, (t) 1s
the feasible service scheme of current iteration. The
denotation X (t+1) is the feasible service scheme of the
next iteration. ¥, (t) and ¥,;; (t+1) are the variation of the
feasible service scheme of the last and the current
overlapping generation. ¢, and ¢, are constant quantity
and taken as the learning coefficients. r, and r, are random
values in value zone (0, 1). In PSO algorithm, a group of
particles are selected to walk in the feasible solutions.
pbest,; (t) is the extremum peint of the particle p[i] until
the current iteration. Correspondingly, ghest(t) is the
extemum point of the particle group until the current
iteration.

From the description above, the iterations of the
particles is random walking in feasible zone of the solution
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under the control of the pbest of the particle and the
ghest of the particle group (Prado et al., 2010). As the
calculation of cost expenditure and the constraints is
related to the set operation m the service scheme of this
study, the iteration formulas above are modified and

the followmg iteration equations are created
(Thakker et ai., 2009):

T (t+ 1) = (¥, (1), pbest_, (t), ghest(tyy  (10)

Ry (LD =& (T (+1), Ry (1) (1)

In the above equations, V,; (1) 1s a feasible service
scheme vector space. @ (¥,, ¥;, ¥;) 1s a function to achieve
a service scheme (maybe infeasible) which 1s approximate
to both ¥; and ¥; by the random modification of ¥,. The
function £ (v,, ¥,) is used to achieve a feasible service
scheme in midway of transforming ¥, to ¥, by adjustment.

Optimization strategy based on the hamming neural
network: The much more computation complexity of the
cost expenditure, the constraints and the PSO algorithm
with respect to the large scale of the logistical network
makes the optimization of logistical service being a time
consuming procedure. To the
performance, another optimization strategy should be
utilized.

enhance real-time

With respect to the optimization procedure, the
beginning of it is achieving feasible service scheme based
on a matrix [M;],., and a vector V ;and considering the
constraints. In other words, an optimization feasible
service scheme 1s corresponding to a combination of a
matrix [M]., and a vector V; as the preconditions.
Usually, that the preconditions are similar means the
optimization feasible service
approximate. Consequently, a designated logistical
network will achieve a certam number of combinations of
the preconditions at first And meanwhile, the
corresponding optimization feasible service schemes are
also acquired. Then the later optimization procedure can
be simplified to finding a combination of the precondition
having been appeared formerly. Finally, the modified PSO
can be started with the optimization feasible service
scheme corresponding to the found combination. Owing
to the similarity of the two combinations of preconditions,

schemes are also

their optimization feasible service schemes are also
approximate. As a result, the later optimization procedure
1s started directly at the point near to the optimization
point with the modified PSO algorithm and the
computation efficiency will be much erthanced.
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Fig. 3: Two layers competitive hamming neural network

In order to conform to the requirement of the similar
combination selection, the Hamming neural network with
competitive learning feature is employed. The Fig. 3
represents the construction of the Hamming competitive
neural network. In order to improve the computation
efficiency of the optinization procedure of logistical
service described above, the two layers competitive
neural network 1s put to use (Ghenavti and
Shomalnasab, 2009). In the competitive networls, the input
15 a vector. Consequently, the combmation of the
preconditions is reformulated to the following vector:

1

s “lnr

E] 12n7 lnla 1112: sy lnn: fl) fZ: fE)

p=11s - Lo Loy ooy Lo Lo Lo vy Lo £, £ £

The vector above consists of the elements of the
horizontal vectors of matrix [M,],., comected by order
and the vector V;being appended.

In the first layer of the competitive Hamming neural
networl, a combination of preconditions reformulated to
a R dimensions vector (R = nx(n+1)) 1s taken as the input
waiting for finding the most similar vector to achieve the
optimization service scheme by further computation. The
denotation W is the weight matrix consisting of selected
S mumber of R dimensions vectors which are
corresponding to the combinations of preconditions
having aclieved the optimization service schemes. A
selected R dimensions vector transposed becomes a
horizontal vector of W, which becomes the prototype
patterns (Guimaraes et al., 2006). The denctation b, is the
bias vector which 1s set equal to the number of the
elements of the input vector. Consequently, W, and b,
can be represented as:

w | [m R

T
W R
w,o=| = pf b =]
WZ P, R

Summarily, the output of the first layer a, can be
expressed as the follows equation:

a, = purelin (W ptb,) (12)
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The outputs of the first layer indicate the correlation
between the prototype patterns and the input vector.
In contrast, the second layer 1s the competitive layer in
which the neurons are mitialized with the outputs of the
first layer. Then the neurons compete with each other to
determine a winner. After the competition, only one
neuron will have a nonzero output. The winning neuron
indicates which prototype 1s the most correlative to the
input vector and the winner is selected to be used to
further optimize the logistical service.

The first layer output a, s used to imtialize the
second layer, that 1s to say:

a, (0)=a (13)
Then the output of the second layer 1s updated according
to the following recurrence relation:

a, (t+1) = poslin (W (1))

The weight matrix W, of the second layer is set so
that the diagonal elements are 1 and the off diagonal
elements have a small negative value. Then the elements
of W, can be represented:

w { b
i

g

ifi=j

otherwise

Where:

OisﬁL

S-1

(15)

As a result, at each iteration, the output of each
neuron will decrease in proportion to the sum of the
output of the other neurons. The output of the neuron
with largest mmtial condition will decrease more slowly
than that of the other and eventually the neuron will be
the only one with positive output and becomes the
WInIner.

Utilizing the competitive Hamming network, the
procedure of the optimization will be reorganized. When
initializing, a table named Prototype Selection Table (PST)
15 created to record the mput vector and the
corresponding optimization service scheme. Meanwhile,
a positive integer number S should be given as the row
vector number of W,, namely, the number of the
prototypes. At the beginning, the row vector number of
W, named as @ 15 set to 0. When the first logistical
service is submitted and the combination of preconditions
is reformatted to the format of the input vector and
executes the optimization procedure without the Hamming

(14)
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neural network involved because of no prototype
available. After the optimization service scheme having
been achieved, the mput vector accompanying with the
optimization service scheme and a positive integer number
K will be acquired. The triple be inserted into the PST as
a record for further use. At this time, there are only one
vector can be selected as a prototype i which the value
of @ 1s set to 1. When 0<@<3, the optimization of the
logistical service is executed with the Hamming neural
network involved After the optimization finished, the
input vector 1s selected as a prototype and @ = @w+1 and
correspondingly, the information will be mserted mto the
PST. When the Hamming neural network is involved in
the optimization, a prototype becomes the winner a time.
Then the value precorded in PST according to the winner
1s added by 1. On the contrary, the failure 1s subtracted by
1. Until @ = 3, the mumber the selected prototype will not
increase. If the value p recorded in PST according to a
prototype 1s decreased to negative number, the prototype
1s a new prototype which 1s last input vector.

Simulative experiments and experimental analysis: As
the complexity of the components and their mnteraction in
the  logistical network, the effectiveness and the
efficiency of a logistical service model are usually testified
by the simulative experiments (Yaghini et al, 2012
Thompson and Hagstrom, 2008). In the simulative
experimments, the logistical networks with different
dimensions are simulated. The Table 1 lists the
dimensions of the logistical networks in the simulative
expermments. To represents the dimensions of the
logistical networks, two factors are selected. The first one
is the Number of the Service Spots (NSS), which the
dimension of the key elements in the logistical network.
The second one is the average number of the packs of
goods (ANPD) dispatched during a certam period of time,
which the service dimension of the logistical network
(Castillo-Villar et al., 2012; Abu-Ali and Hassanein, 2008).

Five simulative experiments are inplemented with the
dimension listed in Table 1. In each experiment, the
optimization procedures with and without Hamming
competitive network (denoted by With HCN and Without
HCN, respectively) are implemented, respectively. For
every procedure, about 200 mnput vectors reformatted by

Table 1: Configurations of the logistical network in the simulative

experiments
Average No. of the packs of

Order No. No. of the Service 8pots (NS8)  goods (ANPD)

1 26 1500
2 51 4000
3 103 10000
4 211 20000
5 356 50000
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Fig. 4. Average time cost according to the optimization
procedures with and without HCN
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Fig. 5. Comparison of ACEMR and CEOSS

the combinations of preconditions are input to achieve
the optimization service schemes. The average time cost
for achieving an optimization service scheme 1s
represented in Fig. 4. Figure 4 indicates that the time cost
of HCN 1s much smaller with the dimension increasing of
the logistical network. Consequently, utilizing the
Hamming competitive network, the optimization efficiency
will be enhanced especially when the dimension of the
logistical network is large enough.

In the procedure of the optimization for a
combination of the preconditions without the Hamming
competitive network involved, a series of feasible service
schemes are presented and the cost expenditure is
achieved as midway results. The comparison between the
Average Cost Expenditure of the Midway Results
(ACEMR) and the cost Expenditure of the Optimized
Service Scheme (CEOSS) indicates the optimization
efficiency of the proposed algorithm (Becker et al., 2012,
Biehl ef al., 2007).

Figure 5 represents the comparison of ACEMR and
CEOSS with the variation of ANPD and the fixed number
of service spots (NSS = 51). The vanations of ACEMR
and CEOSS demonstrate that the CEOSS 1s much less and
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increases more slowly than ACEMR, which indicates the
proposed algorithm 1s effective in the optimization and the
optimization 18 remarkable
accompanying with the dimension increasing of the
logstical network.

Summarily, the optimization model of the logistical
service can not only enhance the efficiency mn reducing
the time cost of the optimization procedure but also is

more effective to achieve the optimized service scheme.

effectiveness more

CONCLUSION

To solve the problem that the tume cost of the
optimization procedure rapidly and unevenly increases
with the dimension mereasing of the logistical network, an
optimization model of logistical service 15 put forward. In
the proposed model, the goods dispatching requirement
and the other static and dynamic information of the
logistical network are taken as the combmation of
preconditions and the constitution of the feasible service
scheme. By formulate the combination of preconditions
into the input vector with designated format, the input
vectors are corresponding with the optimized service
scheme. Taken the historical input vectors as prototypes,
the Hamming competitive neural network algorithm can
the efficiency and effectiveness of the
optimization procedure.

enhance
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