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Abstract: A gamut of insulation diagnostic methods is being practiced. Amongst them Partial Discharge (PD)
detection, measurement and analysis 13 an inherently non pervasive-test test procedure. Hence, it 13 being
considered as a crucial methodology. Over the last three decades attempts were made to discriminate single and
partially overlapped PD sources have yielded moderate success. In the above process techniques like Fractal
Features, Mixed Weibull Function, Neural Networks (WN) and Wavelet Transformation have been implemented.
However, mtricacies involved in discriminating abstruse overlapped signatures, aspects concerning traning
of neural networks for large and 1ll-conditioned data, complications related to varying applied voltages during
measurement etc., continue to confront the research community. Since schemes for large dataset training based
on arbitrarily chosen centers are found to be rather impractical and not tenable during discrimination, mixture
density clustering technique that utilizes an Expectation Maximization with Maximum Likelihood strategy 1s
umplemented for traimng Homoscedastic and Heteroscedastic Probabilistic Neural Network (PNN) variants.
Detailed analysis of the ability of the PNN variants is performed to determine the proposition of utilizing various
preprocessing techniques in discriminating the PD signatures. In addition, studies are carried out on the PNN
variants to determine the ability of the determimstically and autonomously created Probability Density
Functions (PDF) in recognition and classification of substantially big dataset multi-source PD fingerprints due
to varying levels of applied voltages.

Key words: Partial, probabilistic neural network, homoscedastic probabilistic neural network, heteroscedastic
probabilistic neural network, expectation maximization, maximum likelihood, algorithm

INTRODUCTION

With the dawn of the recent deregulation strategies
1 power sector, competition among utilities has made it
inevitable for power utilities to slash-down the cost
related to operation and maintenance of equipment
assoclated with energy utilization in power systems. Since
the reliability of electrical equipment 1s related to the
quality of its insulation, on-line diagnostic techniques
have become essential and hence have grabbed the focus
of researchers worldwide developing predictive
diagnostic tools used for monitoring and assessment of
insulation system. Recognition and classification of the
source of Partial Discharge (PD) and subsequent analysis
of discharge signature patterns 1s of immense importance,
since 1t 13 a fundamental yet a key pre-requisite for
credible diagnosis (Vahedi et al., 2012) of the insulation
system. Partial Discharge (PD) is due the consequence of

enhancement of electric field stresses in the restricted
portion of a dielectric (BSI, 2000) bounded by electrodes.
Since PD in insulation may be due to defects such as
void, cavities, fissures, blow-holes, exterior imperfections
etc., an array of divergent signature patterns that describe
the complex nature of physics related to insulation
degradation characteristics 1s extubited. PD signature
patterns invariably reveal a complex stochastic and
non-Markovian process (Van Brunt, 1991) with
substantial variability which may be ascribed to
characteristics such as memory propagation effect
(Van Brunt et al., 1993), temperature, role of the initiatory
electron in the gap etc.

As an outcome of innovations in digital signal
processing  techmiques and associated hardware,
developments in high speed processors and evolution
of associated data acquisition systems there has been
a swge in eagerness among scientists and power
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equipment operators in analysing PD sighatures and
source discrimination. Further, since real-time PD
mvariably involve discrimmation of
complex overlapped multi-source signatures, attention
among peer researchers has now changed to identification
of multi-source PD (Lalitha and Satish, 2000; Lee et al.,
2000). During the past few decades a range of scientific
and soft-computing techniques such as Neural Networks
(NNs) (Lotfi and Benyettou, 2011; Tortoe et al., 2011;
Gulski, 1995; Gulski and Krivda, 1993; Mazroua et al.,
1994; Satish and Zaengl, 1994), Fuzzy Logic
(Abdel-Galil et al., 2005, Contin et al., 2002), Fractal
Features (Satish and Zaengl, 1995, Lalitha and
Satish, 1998) and Contour Mapping, Hidden Markov
Models (HMM) (Satish and Gurura), 1993;
Abdel-Galil et al., 2004), Wavelet Transformation
(Ma et al, 2002) etc., were implemented for the
discrimination of single source PD and partially
superimposed multi-defect PD patterns with moderate
results.

A few noteworthy contributions by researchers
invelved in PD discrimination studies including those of
the authors of this research m PD pattern recognition
utilizing NNs comprise the Back Propagation Network
(BPN) (Mazroua et al., 1993; Karthikeyan et al., 2006a),
Radial Basis Function (RBF), Self Organizing Map (SOM)
(Satish and Zaengl, 1994), Adaptive Resonance Theory
(ART) (Karthikeyan et af., 2006b), Counter Propagation
Network (CPN) (Hoof et al., 1997) and rudimentary
versions of  Probabilistic Neural Network
(Karthikeyan et al, 2005, Venkatesh et al, 2007,
Karthikeyan et af, 2008), Nonetheless, problems
concerning abstruseness of fully overlapped PD
signature patterns, complicatedness mn training large
ill-conditioned PD data signatures obtained from real
time and on site monitoring system, detrimental
consequence of outliers during large dataset training,
intricacies related to discrimination of PD finger prints as
a consequence of changes m applied voltages during
testing etc., persist.

This research work analyzes aspects related to
classification of multi-source PD pattern from the
standpomt of the function of mitial seed (center selection)
during clustering and  subsequent  traming
(Alamelumangai and Devishree, 2012) and complexities
involved in discerning PD pulses. Further it is also the
objective of this research to establish the classification
capacity of the mixture density estimation based
clustering algorithms that utilize the FExpectation
Maximization (EM) in conjunction with Maximum
Likelihood (ML) strategy owing to different applied
voltages smce several research studies in associated

measurements

fields of engineering have clearly demonstrated that
training technmiques that rely on arbitrarily selected
prototype centers from a substantial volume of data 1s
observed to be rigid and m many studies unfavorable
during classification. Consequently, an EM-MI, algorithm
is implemented during the training phase for acquiring
suitably mmtialized seed vectors which would serve as
prototype centers for training the two modified versions
of the Probabilistic Neural Network (PNN) namely the
Homoscedastic PNN (HOPNN) and the Heteroscedastic
PNN (HRPNN). The performance of PNN variants 1s
analyzed to determine the effectiveness of the
preprocessing techniques, to establish the impact of the
smoothing parameter in the PNN versions during
discrimimmation and to evaluate the ability of the
determimistically and autonomously i1mtialized PNN
versions in classifying large dataset on-line multiple
source PD signatures.

Further, the objective of the authors of this research
1s to extend their earlier study pertaimng to multi-source
PD pattern recognition (Venkatesh and Gopal, 2011). A
wide range of similar convergent NN tools were utilized in
order to ascertain the difficulties during the classification
task. The same benchmark models that were made use of
in the previous study is also adapted in this research.

EXPERIMENTATION AND BENCHMARK
LABORATORY MODELS METHODOLOGY

Experimental test setup: Extensive laboratory analysis
has been performed in this research in the lines of the
stipulations and requirements laid down in [EC 60270 for
acquiring and assimilating benchmark PD signature. Such
stipulations and requirements would serve as a basic yet
vital pointer in validating the proposed algorithms. Hence,
1t provides reliable and repeatable classification capability.
The direct detection system and test setup procedure for
measurement of PD signature patterns are obtained as laid
down 1 IEC 60270 (BSI, 2000). In order to ensure
enhanced detection and measurement of pulse signals
transfer characteristics, a 1 nF (nano-Farad) coupling
capacitor is appended to the test circuit. A digital PD
Measurement System (Model No. DTM-D®) which
comprises a Digital Storage Oscilloscope (TDS 2002B) for
measurement and built with a tunable variable filter-insert
module (Model: DFT-1%) for acquiring pulses in the range
2-5000 pC whose center frequency is variable in the range
600-2400 kHz at a bandwidth of 9 kHz 1s utilized. The
measured PD magnitude is quantified and exhibited in
pico-coulomb (pC) or in milli-volt (mV). Figure 1 shows a
typical layout of PD test arrangement utilized mn this
research.
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Fig. 1: Typical layout of PD testing and measurement setup
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Fig. 2: Photograph of laboratory test setup with electrode bounded cavity benchmark model

Figure 2 and 3 indicate a photograph of the In addition, the PD test system is equipped with
laboratory test layout and the PD detection, measurement — noise window-gating facility which mitigates the
and acquisition setup. continuous noise during PD (Alesaadi et al., 2012)
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Fig. 3: Digital PD detection, measurement and acquisition module
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Fig. 4: Typical signature patterns representing multiple source PD (electrode bounded cavity with air corona sample)

captured from PD gold®

measurement and acquisition. PD  Gold® software
(product of HV Solution Inc, UK) 1s interfaced to
capture the PD pulses from the PD detection,
measurement and acquisition system to in turn enable
obtaming PD fingerprints. Test setup 1s calibrated
according to the standard recommendations of IEC
60270 utilizing a digital reference calibrator (Model: PDG®).
PD pulses obtained at power frequency (50 Hz) by PD
Gold® acquisition software displays the pulse
signature in sinusoldal and elliptical tume-base which

can be chosen in auto or manual category. The
operator can acquire and record pulse data for a
period of usually 10 min which is obtained from
waveforms which are recordable for a range of 240 to
750 cycles. In this research study PD fingerprints are
acquired and captured during testing for a duration of
5 min to ensure considerably preconditioned datasets
that truly reflect the source of PD. Figure 4 replicates PD
signature pattern representing multi-source  PD
fingerprints.
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Fig. 6: Laboratory benchmark model indicating oil-corona
discharges

Benchmark laboratory models for PD pattern
classification: Five distinct sources of PD are replicated
by fabricating laboratory benchmark models which
comprises single and multi-source PD namely electrode
bounded cavity, corona discharges 1in air, corona
discharges m transformer oil, electrode bounded cavity
overlapped with corona discharges in air and multiple
source electrode bounded cavity of varying dimensions.
Internal discharges are replicated by creating an electrode
bounded cavity (labeled ‘EC”) of depth 1.5 mm with a
diameter of 1 mm in sample insulation system fabricated
from Poly Methyl Metha Acrylite (PPMA) with a diameter
80 andl 2 mm thick as shown m Fig. 5. A second source of
mternal discharges called the “corona discharges in oil’

Fig. 8 Multiple source PD (electrode bounded cavity
with air-corona)

(tagged ‘OC") is reproduced with a point-plane electrode
configuration filled with transformer oil as shown in
Fig. 6.

A mmportant type of external PD labelled “air-corona’
{(designated “AC") 1s simulated using a rod electrode (with
an apex angle 85°) connected to the High Voltage (HV)
terminal as shown in Fig. 7. One among frequently
encountered form of multi-source PD termed as “electrode
bounded cavity with corona discharges m air (labelled
*ECAC) 18 simulated by introducing a thin rod electrode
of 2 mm diameter from the HV electrode. The other
source of defect includes a 2 mm depth electrode-
bounded cavity on the solid dielectric system which is
in turn connected to the high voltage electrode. This
arrangement 1s indicated in Fig. 8.
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Fig. 9: Benchmark model replicating multiple electrode
bounded cavity discharges

Ancther type of multiple source PD is comprises
multi-source  electrode bounded cavity discharges
(labeled ‘MEBC” are replicated by 3 sets of cavities
wherein the outer cavities are of 4 mm depth and inner
cavities are 2 mm depth placed at the high voltage
terminal. The setup 1s shown in Fig. 9.

PREPROCESSING PD SIGNATURE PATTERNS
AND FEATURE EXTRACTION

Though several established preprocessing and
feature extraction strategies have been attempted by
researchers (Sahoo et «al, 2005), varied yet straight
forward preprocessing techmiques based on statistical
measures are exploited for pattern discrimination task so
as to determine the performance capability associated
with the various vital trainable parts and characteristics of
the PNNs such as the spread parameter, ‘curse of
dimensionality” (Bishop, 1995), quantification of the mean
vector which is estimated based on probability density
Incidentally, the phase-window
methodology of preprocessing utilizing various statistical
operators which has been adopted earlier by the authors
of this research has also been taken up m this work.
These measures include. (1) Maximum values of g
(107 and 30°), (2) Minimum values of g (10° and 30°) and
(3) Central Tendency (10° and 30°). Further, since several
researchers (Gulski, 1995; James and Phung, 1995; Krivda,
1995) had earlier utilized the traditional statistical
operators (operators that include mean, skewness,
kurtosis, cross-correlation etc.) for the classification of PD
signatures with good accuracy, research work carried out
in this study focuses on establishing the capability of
these operators in recognizing and discriminating
substantially large dataset multi-source PD signatures.

estimates  etc.

Table 1: Multi-source large dataset pd pattem signatures for classification

Total No. of

Applied training

Type/source of PD Label  voltage (kW)  patterns

Electrode bounded cavity EC 7.3 90
9.1
9.6

Corona discharges in air AC 13.7 90
19.0
23.0

Corona discharges in oil ocC 21.0 90
29.0
32.0

Void with corona discharges in air  ECAC 9.1 90
9.3
14.0

Multiple electrode bounded cavity MEBC 7.0 90
10.0
13.0

Table 1 indicates the total number of fingerprints
taken up for analysis. The database comprises large sets
of PD signature patterns comprising of each PD source for
varyimng applied voltages. It 1s pertinent to note from
Table 1 that for classifying 660 sets of divergent patterns,
two sets (36 sets relating to each defect category and
27 sets of fingerprint signatures related to every discharge
category) are utilized for obtaming the appropriate centers
chosen from the proposed clustering algorithm which are
further utilized for training and testing of the PNN
versions It 18 observed during this research that the
centers of PD patterns serve as a reasonably good
representative codebook.

HOMOSCEDASTICAND HETEROSCEDASTIC PNN
FORMULTI-SOURCE PDPATTERN RECOGNITION

General aspects and architecture of PNN versions: PNN
(Specht, 1988) is a representation based on the
competitive learning strategy with a ‘winner-talkes-all
attitude’. PNN 1s a classifier adaptation, whereimn decision
making is based on the Bayesian scheme which is
integrated with a non-parametric estimation technique
(Parzen window) for computing the Probability Density
Function (PDF). The Bayesian model provides class
conditional probability decision for pattern classification
which 1s utilized for obtaining an appropriate optimal
estimate of PDF. The basic (or) original version of the
PNN (OPNN), makes use of a Parzen window estimator
with a mixture of Gaussian kernels and has no feedback
path. OPNN takes all the sample vectors during traiming as
centres ‘¢’ of Gaussian kernel function with only the
tunable part of the network to be adjusted during the
training stage being a common variance (0). Though it is
apparent from the discussion that more the exemplars the
better 1s the classification rate of the OPNN, it is crucial
that a thorough study 1s carried out to analyze the
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Fig. 10: Architecture of hetroscedastic PNIN (HRPNN)

deleterious influence of over-training and catastrophic
forgetting are analyzed during discrimination in the
context of large dataset traming. It 1s hence evident that
the traiming scheme would be only be reasonable if a
smaller set of kernel functions that reflect a meaningful
depiction of the training data is obtained without
conceding on the accuracy of discrimination capability.
The Expectation Maximization (EM) with Maximum
Likelihood (ML) training algorithm implementation for
mixture of Gaussian PNN as modelled (Streit and
Lugmbuhl, 1994) with a common covariance (“1dentical
spread’) 1s termed as Homoscedastic PNN (HOPNN).
Uncorrelated Gaussian kernel functions provided with the
capability to obtamn different variances (“varying spread™)
called the yield comparatively improved sets of adequate
and parsimomous centers that characterize the class
conditional PDFs could be utilized Thus employing
uncorrelated Gaussian kemel functions with different
variance (“different scatter”) is called Heteroscedastic
PNN (HRPNN). The proposed PNN variants provide
suitable clustering
strategies that are inherently robust in handling large
datasets comprising outliers. Further since the EM-ML
algorithms have rapid traimng speed and good
convergence (Xu and Jordan, 1996), the proposed
versions of PNN provide viable opportunity for tramning
and testing large dataset on-line PD signature patterns.

The architecture of HRPNN (Streit and
Luginbuhl, 1994) is essentially similar to that of the
OPNN with only a few modifications in the pattern layer
and the approach by which decision is obtained in the
output layer. The architecture of HRPNN is shown in
Fig. 10.

The first layer receives the input patterns. In the

multivariate  density estimation

second layer node (pattern umit), the ith kermnel in the jth
group, 1s defined as a Gaussian basis function:

> (X-u‘)l/o_‘: ) ﬂ(X) — e{x»u” !

—>
—> (X'U;)Z/G; N fx)= eu..wf

—> 2

.
—> (x-u,)/o;’ N £(x) = ¢

—>
—> —>  (x-u)/e; P—> £(x) = et

Input layer Exemplar layer |

Decision layer

Class layer

where ¢;; is the centre or the mean vector and o, is the
variance or smoothening parameter. The third layer has k
nodes:

Rij
£ (x) =2 B,p;(x)1<j<R
i-1

and each node estimates a class conditional PDF (f) using
a mixture of Gaussian kernels. The fourth layer (decision
layer) makes decision according to the equation:

g(x)=arg {max [of, (x )]}
where ¢ refers to the class a-priori prebability.

Learning algorithm-expectation maximization with
maximum likelihood (EM-ML) estimation: EM 15 an
iterative system that utilizes two major steps namely the
expectation process (E-step) and a maximization process
(M-step) to obtamn the Meaximum Likelithood (ML)
estimation of a set of paramter. EM algorithm 1s assured to
converge to an ML estimate (Streit and Luginbuhl, 1994,
Xu and Jordan, 1996) at a rapid rate. Every sequence
calculates an expectation (mean) value of a group of
unobserved data using the present estimated value of the
data and the observed wvalue. In both the cases an
iterative procedure is employed to minimize the variations
in the log-posterior likelihood function. Each M-step takes
the data from the E-step presuming it to be the truly
measured data to acquire the likelihood function and thus
determine the estimate of the desired parameter. From the
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Table 2: Classification capability of HOPNN and HRPNN versions for discrimination of multi-source PD signatures

Randomly chosen initial centers-144

No. (36 sets for each class)

Classification capability EM-MI.

algorithim (%)

No. of PDF labeled sequentially as EC, No. of
Feature extracted AC, OC and ECC, MEC (Set 1 only) Tterations HOPNN HRPNN
Tnput based on Total No. of
Phase window No. of tuples  testing datasets ~ HOPNN HRPNN Setl Set2 Set 1 Set 2 Set 1 Set2
=Gt (30°) 36 624 24,22,20,21,23 20,18,18,20,17 32 18 83.4 79.1 86.2 88.4
=Gt (30°) 36 624 26,21,25,18,26 24,17,21,23,22 38 15 80.1 78.3 82.8 80.8
(P-Cae-T1 (10°) 108 660 16,18,16, 17,21 13,1516,12,16 42 15 85.6 80.2 87.5 8l.6
P-Cuin-11 (10°) 108 660 19,17,1817, 23 15,14,19,18,24 48 27 82.7 80.6 82.2 81.8
Traditional statistical 48 624 16,16, 17,13,15 14,16,15,12,16 17 14 91.6 89.1 92.2 90.1
operators (30°)
Traditional statistical 144 624 13,16, 18,14,16 12,11, 15,13,14 19 16 92.1 90.2 92.8 90.6

operators (10°)

point of view of training PNN variants, it is appropriate to
note that in each E and M-step, the mean and variance
parameter is adjusted till the log-posterior likelihood
estimate 1s brought to an optimal mmimum. Since the
deliberation in this implementation 1s related to obtaiung
the estimates for mean and variance for the PNN versions,
the algorithm computes the weights which 13 in addition
updated during the every step. E-step adapts the
estimated PDF in the exemplar layer along with the mixing
coefficient (B) to obtain the estimated value of the
weights. Subsequently the M-step computes estimate and
the weights m the E-step to create a likelihood function
which in turn serves in obtaining the overall maximized
likelihood estimate of the parameters. Thus, the final
values for the centers (cg;), variances (0%;) and the mixing
coefficients (Bg,;) are computed.

ANALYSIS OF RESULTS
PERFORMANCE OF PNN VERSIONS IN
CLASSIFYING MULTIPLE PD PATTERNS

Comparison of classification capability of PNN versions
based on randomly selected initial seed vectors: The
proposed PNN versions have been implemented using
MATLAB version 7.1, Release 14 and during the training
phase, randomly selected preprocessed vectors for the
initialization of representative centers are taken. For the
purpose of comparison, “Set 1° centers 1s formulated such
that the vectors are altematively odd and even numbered
samples of PD signatures pertaining to each applied
voltage. However, in order to verify perceptible variations
in discrimination of the proposed PNN versions in
discerming ‘Set 2°, centers pertaining to each applied
voltage are sampled such that the last two signature
vectors are taken up. Table 2 summarizes the performance
of the proposed PNN versions. The noteworthy aspects
observed in Table 2 are summarized:

s Misclassification rate invariably is doubled for each
type of randomly selected centers. It is also pertinent
to note that a more frugal set of centers is achieved
while employing the HRPNN with superior
discrimination. However, a few facets related to the
effect of outliers in discriminating inter-class clusters
are observed to have created problems during
classification of fully overlapped patterns

» It 1s also clear from Table 2 that more frugal sets of
centers are obtained utilizing the HRPNN algorithm
with superior classification capability

»  Itis obvious from Table 2 that the number of PDFs
produced in both PNN variants has a wide variation
which may be attributed to the choice of the
initialization in the input seed vectors

» It is worth noting that a perceptible reduction in the
number of representative PDFs was observed when
the autonomously acquired centers are utilized A
sample analysis and study indicated that in the case

based on traditional statistical

operators a more prudent set of centers (sequence of
the PDF is 12-11-15-13-14) is obtained in the case of
the HRPNN version

of the measures

CONCLUSION

Based on the comprehensive analysis the significant
merits of utilizing the Gaussian mixture density based
clustering algorithms for obtaining imitialized seed vectors
for training and subsequent classification of multiple
source PD patterns by HOPNN and HRPNN versions are
summarized:

¢+ In spite of the fact that training PNN versions
utilizing the EM-MI. algorithm provide as a
realistically good scheme for traming the networks,
it i3 lucid from the exhaustive studies that the
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discrimination rate of the PNN variants may be
modified to perform with superior performance by
utilizing the labelled clustering algorithms to obtain
enhanced prototype initial cluster seed vectors

*  Since rapid computational speed and convergence is
observed with both the proposed PNN versions (for
all the types of preprocessed feature vectors) thus
methodology provides an exciting prospect for
mnplementing a modular PNN framework for
implementation in real-time and on-line condition
monitoring system for classifying msulation faults
and diagnosis of insulation of power components. Tn
this context it 1s pertinent to note that since the major

to assess the

mtention of this research 1s

performance of the  homosedastic and
PNN classifying
PD signatures due to randomly

mitialized centers obtamned from the proposed

heteroscedastic versions in

multi-source

maximum likelihood based algorithm procedure and
its subsequent PDF estimates, the analysis has been
taken up with fundamental yet effective statistical
measures only. The “K-fold” and the *One-Hold-One-
Out’ methodology have been performed to check the
authenticity of the input in this research. Yet it is
appropriate to note that more research and validation
1s mdispensable m the case of large dataset PD
signature analysis

*  Further 1t 13 also mportant to note that during the
course of the entire study, a fixed value of the
smoothing parameter (0 = 0.0001) as a common
spread parameter value has been used in thus
research analysis in the case of HOPNN training
since it is observed that for almost all the
preprocessing measures taken up, the class decision
hyper-boundaries are reasonably well distinguished
and uniquely separated
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