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Abstract: The efficient navigation of a mobile robot in any environment lies in effectively identifying the
obstacles and the free space. Once they are identified the robot has to decide the free space so that it can reach
the destmnation in an optimal path. There are several existing algorithms which has been adopted m the past to
cater this issue. The algorithm's accountability not just rest with collision free navigation, but also in finding
a solution with lesser time complexity. In this proposed method Laser Range Finder (LRF) readings are fuzzyfied
using a linear fuzzy membership function. Defuzzification is done using a deciding distance which is applied
as A-cut. This provides a solution set with all possible collision free navigable paths locally (Perception phase).
Finally, the path is chosen based on the environmental obstacle density (Decision phase). Experimental
validation of the proposed algorithm was done in cluttered, sparse and closed environment with a Coroware’s
mobile robot and the performance was highly satistactory.
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INTRODUCTION

Mobile robot navigation avoiding collisions with
obstacles in an unknown environment (Abiyev et al.,
2010, Shi et al, 2010, Fernandez et al., 2004) is a
challenging problem to be addressed. The presence of an
obstacle, its distance from the robot and its features can
be detected using on board sensors like Laser Range
Finder (LLRF) (Qiu and Han, 2009), Ultrasound Sensors
(US) (Borenstein and Koren, 1988), camera, Inertial
Measurement Umnit (IMU) and Global Positioning System
(GPS). In sensor fusion technicues the reliability factor on
the fused data mncreases with more number of sensors
deployed for the purpose of information extraction. On the
contrary as the number of sensors on board mcreases the
following factors becomes an important issue. (1) The
load on the mobile robot increases, (2) The power demand
on the battery mcreases, (3) The quantum of data 15 very
high thus occupying large memory space and (4) The
navigation problem becomes computationally intensive
hence system becomes Having the above
limitations in mind it may be concluded that information
extraction and decision making from a single and the most
reliable sensor can prove effective and efficient. The data
from other sensors can be used when the reliability on the
current sensor decreases, or there 1s a sensor failure.
When decision has to be taken based on data from a
single sensor it is better to go for some logical decision
making tools, one such tool is fuzzy logic (Yang and L,
2002).

slower.

Autonomous exploration is a fundamental problem
to solve as an autonomous robot carries out tasks in
real unknown environments (Leonard et al., 1992
Lumelsky et al, 1989; Chen and Huang, 1994,
Edlinger and von Puttkamer, 1994; Senthilkumar and
Bharadwayj, 2012). Semsor based exploration
(Surmann et af., 2003), motion planmng, localization
(Duckett and Nehmzow, 1998; Fox et al, 1998),
simultaneous mapping (Yamauchi et al, 1998) and
roadmap (Van den Berg and Overmars, 2005) are
processes to be coordnated to achieve automation in
navigation of mobile robots in unknown environments.
Application of Kalman filter (Simon, 2010; Ramkumar and
Manigandan, 2012) increases the computational
complexity, though it provides a better result. In this
study a method for effective obstacle navigation using
LRF is proposed. The algorithm uses fuzzy based
technique (Samsudin et af, 2011) to identify every
navigable path locally and to provide a knowledge string
of the environment. Based on the solution set generated
the robot perceives the nature of the environment and
decides a path accordingly.

MATERIALS AND METHODS

System architecture: The algorithm has two phases
perception and decision. The two phases are implemented
as separate modules. The diagram in Fig. 1 depicts the
schematic of the software architecture depicting flow of
data in the process. The laser sensor and encoder hold
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Fig. 1: Schematic of software architecture

communication with the perception module through the
HAT, (Hardware Abstraction Layer) provided by the
player toolkit.

The Gazebo toolkit (PSGP, 2011) provides the
functionality of proxies which abstracts the layer of
communication between the device and the program.
Corresponding device proxies provides appropriate
methods to control the devices. The perception module
senses the environment and updates the robot’s current
position from encoder by Laser proxy and Position2d
proxy correspondingly. Perception module then interacts
with the decision module to obtain the appropriate
solution. As the solution is to control the motor which 1s
done by Position2d proxy, the control flows from
perception module to position2d proxy only.

TImplementation: The algorithm implemented malkes the
robot move forward until it 1s confronted by an obstacle
and then it decides a navigable path. The perception
phase computes all the navigable paths in the
environment. When the forward path is challenged, it
passes the solution set to the decision phase so that an
appropriate path 1s selected based on the obstacle density
in the environment. The detailed mmplementation of the
algorithm 13 as follows.

Perception phase: During this phase the robot keeps
moving forward (Hsu and Hwang, 1998) sensing the
environment. The algorithm is supplied with a parameter
safe distance which keeps the sensor at a distance safe
from the obstacles and prevents it from colliding from the
obstacle. This should be greater than 2x1, where 1 is the
length of the robot. Another parameter is deciding
distance; a suitable distance chosen that is greater than
safe distance and closer to the range of the sensor with
maximum credibility factor.

Length_of robot/2

L[ ]

Length of robot

Fig. 2: Geometry to calculate THRES

Membership function: The membership function for the
LRF readings is derived as p(x) = {xA1+max(x)), if
safe distance<=x<=max_range}, where x LRF readings.
This provides a fuzzy set with values (0,1) corresponding
to the enviromment.

Defuzzification: The defuzafication by A-cut 1s deployed
to determine all the navigable paths for the robot. The
A value is chosen based on the deciding distance. The
fuzzy value for deciding distance is the A. Every fuzzy
value A-cut is assigned 1 otherwise 0. All the possible
paths are determined from the defuzzified crisp set
obtained. The minimum width (THRES) for navigation is
obtained from the number of range readings lying above
the deciding distance as follows.

With known angular resolution, dimension, safe
distance, FOV, deciding distance, THRES 18 computed
with Eq. 1 and from Fig. 2.
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Deciding distance is user chosen value >= Safe
distance Safe:

0 = sin~' (length of robot/(2xdeciding distance))
THRES = 2x8/(sensor angular resolution) (1)

The THRES consecutive number of range readings
should be 1 in order to be considered as potential
solution.

Decision phase: The followimng is the pseudo code in
deciding the path by analyzing the nature of the
environment.

Tf length of $;0:
If Counterfailed=3:
Environment = CLUTTERED
Take the solution from the set § with largest count
Else:
Environment = SPARSE
Take the solution from the set S with minimum turn
End if
Save the set S; and the solution taken
Else:
Environment = CLOSED
Racktrack to the previous decision point
Decide from S;;-{solution}
End if

Based on the value of Counterfailed, the robot learns
the nature of the environment. The parameter
Counterfailed associates to numbers free spaces that are
not potential navigable paths. With this, the robot
classifies the environment into one of the following three
types and decides a path based on that.

Cluttered environment: When the Counterfailed>3 which
signifies that there are more than three free spaces but
cannot accommodate the robot. The robot learns that it 1s
in a cluttered environment (Fig. 3a). In such a case the
robot finds a path having the widest navigable width from
the set S which comprises of all the possible paths from
that position of the robot. It tries to evade the cluttered
obstacle in a way that provides a better navigable path.

Sparse environment: If the Counterfailed<3, the robot
assumes that it 1s 1n a sparse environment (Fig. 3b). The
robot from its set of solution, S chooses that path which
has relatively mimmum turn angle with respect to the
current pose. This is better as the robot’s orientation is
not disturbed much when confronted with fewer
obstacles.

Closed environment: The worst case lies in the fact
that when the environment 13 closed (Fig. 3c¢). The

Fig. 3(a-c): (a) Mobile robot encountering a cluttered environment, (b) Mobile robot encountering a sparse enviromment
and (c) Mobile robot encountering a closed environment
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solution set 15 null. Whenever a solution set

becomes null the robot retraces the path to reach
previous decision point and chooses the path not
chosen. Retracing the path in a static

environment does not result in collision. When nth
position is closed it goes to the (n-1)th position which
1s possible.

The algorithm saves the solution set at every
decision point and laser scan to aid exploration and

mapping.
ALGORITHM

The proposed algorithm is as follows. For each scan
obtained from the LRF:

If path in front is navigable:
Move forward
Else:
8={}
Fuzzify the entire LRF reading using the finction pux) = x/{1+maxrange)
Apply A-cut to the fuzzy set
Counterfailed = 0
For each element. in the fuzzy set:
If element is O || end of the fuzzy set is reached:
If count>THRES && count>0:
Solution = (index,count)
$ =8 U {Solution}
Else:
Counterfailed+ =1
Endif
Count =0
Else:
Increment count
Endif
EndFor
EndIf

DECISION PHASE

If length of 8;>0:
If Counterfailed=3:
Environment = CLUTTERED
Take the solution from the set § with largest count
Else:
Environment = SPARSE
Take the solution from the set 8 with minirmum turm
End if
Save the set S; and the solution taken
Else:
Environment = CLOSED
Backtrack to the previous decision point
Decide from S;;-{solution}
Endif

The THRES in the algorithm is obtained from Eq. 1. S
mentioned in the algorithm denotes the set of all possible
solutions in the environment at a particular decision point.
Counterfailed keeps count of set of continuous values

that are not potential solutions. The value of the Counter
failed is directly proportional to the number of obstacles
1n the environment.

The algorithm above makes the robot move forward
until confronted by obstacles. As the robot keeps sensing
the environment, it finds every potential solution with
respect to the deciding distance. Then chooses a path
from the set of potential selutions. The chosen solution
depends on the type of the environment the sensor is in.

The number of solutions and Counter failed is
considered to categorize the environment. Tn a SPARSE
environment, the solution having minimum turn is chosen.
On the other hand m a CLUTTERED environment the
sensor chooses the solution having maximum width. Tt
goes to the previous decision taken pomt if the
environment is CLOSED.

RESULTS AND DISCUSSION

The algorithm was tested in real time and graphs of
fuzzy set and defuzzified crisp sets in different
enviromments are provided below to explain the results
briefly. The data is obtained from the LRF of the robot.
Value of A in A-cut in all the examples quoted is assumed
as 0.3.

In Fig. 4a, the robot is confronted by cluttered
obstacles 3. This 1s known from the number of spaces that
cannot accommodate the robot through it. The robot then
decides to navigate through the path having larger
width which is found from the count in the solution set.
Figure 4b, shows the values post A-cut. This clearly
shows two navigable paths.

In Fig. 5a, the robot 13 m front of sparse obstacles.
The set 3, comprising of every possible solutions from
that pose has lesser number of solutions and the
Counterfailed also denotes the existence of sparse
obstacles. The robot then decides to navigate through the
path having minimum turn angle which is found from the
solution set. The defuzafied crisp set’s graphical
representation in Fig. 5b, shows the values post A-cut.

From Fig. 6a, it is clear that the robot has a closed
envirorment 1n front of it which 15 leamt by the robot from
the nature of the solution set which has zero navigable
paths. The robot reverts back to previous decision pomt.
The Fig. b, shows that the robot has not detected the
threshold distance to navigate the obstacle, so it
re-tracks.

Shi et al. (2010) uses coordinate transformation and
Kalman filtering which are computationally very intensive
and the environment considered is also partially known.

1597



J. Applied Sci., 14 (14): 1594-1599, 2014

067 Before lambda cut
0.5
0.4

0.3 1

Fuzzy value

0.1

T T T T 1
300 400 500 600 700

Range count

T T
0 100 200

Fuzzy value

L/

After lambda cut

0.8
0.6

0.4

0.0 T
0 100 200

T T T 1
300 400 600 700
Range count

500

Fig. 4(a-b): (a) Fuzzy set-cluttered environment and (b) Defuzzified set-cluttered environment
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Fig. 5(a-b): (a) Fuzzy set-sparse obstacle enviromment and (b) Defuzzified set-sparse obstacle environment
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Fig. 6(a-b): (a) Fuzzy set-closed environment and (b) Defuzzified set-closed environment

The proposed algorithm m this study 1s fast, simple and
direct to implement as it uses the raw LRF reading without
any transformation in coordinates. This algorithm can be
implemented in any unknown and static environment.

CONCLUSION
The obstacle avoidance algorithm proposed in this

study 1s tailored to guide a robot in explormg an mndoor
environment so that every reachable area is visited

optimally. The perception module gives all navigable
paths in the environment which is quite suitable for the
graph-based exploration as a solution set. The robot
selects the best solution from the set which provides
optimal obstacle avoidance, mimmum turmng angle and
shortest distance to reach a target. The solution set and
the pose of the robot are saved after each decision
thereby assisting the robot in backtracking and in
choosing a different path to evade the obstacle and
explore the environment. The environment classification
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as cluttered, sparse and closed will be helpful in optimal
path planming. When the robot backtracks to previous
decision point, an alternate path is chosen from the
solution set at this decision point exclusive of the path
earlier taken. If a better path is desired then the solution
set may be shrunk by increasing the A-cut value. This
process explores every solution obtained from the
perception module and completes when all the solutions
has been explored completly.
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