——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 14 (2): 193-196, 2014
ISSN 1812-53654 / DOL 10.3923/1as.2014.193.196
© 2014 Asian Network for Scientific Information

A New Exact Pattern Matching Algorithm (WEMA)

Abdallah A. Hlavel and Adnan A. Hnaif
Department of Computer Information System, Faculty of Science and Information Technology,
Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan

Abstract: In pattern matching or recognition the match usually has to be exact. This study, introduce a new
general approach algorithm, called the Weighted Exact Matching Algorithm (WEMA). The WEMA applied to
match the exact pattern within a text depending on preparing the text in an index matrix weight with the locations
of characters in alphabetical order to perform direct access matching. Whereby, WEMA check the possibility
of the pattern existence before applying the matching process. The simulation result showed significant
umprovement in the exact string matching and therefore extreme competence in the real applications.

Key words: Pattern, exact string matching algorithms, quick search, weighted exact matching algorithm, WEMA

INTRODUCTION

Pattern matching algorithms are used to retrieve
patterns from sets based on a search criterion. In
computer science applications, the matching algorithms
are the most used in different fields such as network
security, artificial intelligence, data mining and others.
Matching algorithm can be utilized for various forms of
digital data including images (Abed and Zaow, 2011,
Chalabi et ai., 2008) audio and video (Bulbul, 2007). String
matching algorithm is the process to find the occurrence
of pattern “P” into a text “T”, where “T” is longer than
“P” (Alhay et al., 2010). String matching algorithms can be
classified mto two techmques: Exact and approximate
string matching algorithms. Exact-string-matching
algorithms can be used to find the occurrence of “P” in
“T” while approximate string matching algorithms are
concerned with the similarity percentage between the “P”
and the “T”. Moreover, there are many good works to
enhance the performance of exact or approximate string
matching algorithms Sleit ef @f. (2007) and Mansi and
Alnihoud (2010) and also some works m parallel approach
to enhance the performance (Hudaib et of., 2008; Raju and
Babu, 2007).

This study mtroduces an algorithm called WEMA
which can be used to find exact matching between two
strings, so that the proposed algorithm consists of two
steps: First, create an alphabetical matrix called index
matrix weight, in order to amrange all the characters
positions of the text on it. Second, run the matching
process to find the exact occurrence between the pattern
“P” and the text “T”.

MATERIALS AND METHODS

This section mdicates some of the most famous

algorithms that are used i exact string matching
algorithms.

Boyer-moore algorithm: Boyer-Moore algorithm is
considered as one of the most famous pattern matching
algorithms, one that 1s considered very fast n practice
and it was designed for the exact string matching of many
strings against a single keyword (http://Awww-igm.univ-
mlv fi/~lecrog/string/). The first heuristic phrase used 1s
“bad character shift”. Bad character shift starts a
comparison from the right to the left and if a character is
seen that does not exist in the text to search for, then the
search algorithm can be shift forward to an “M” character
where “M” 15 the length of the pattemn. The second
heuristic phrase used in the Boyer-Moore algorithm is
“good suffix shift”. Good suffix shift starts a comparison
from the right to the left and if it is matches, then the
algonthm check the next character in the text with the next
character in the pattern, until matching all the strings. In
the case of mismatching, the Boyer-Moore algorithm is
looking for the next occurrence of a substring that was
matched before.

Quick search algorithm: The Quick Search algorithm is
more simplified version of Boyer-Moore algorithm but the
Quick Search algorithm used only the “bad character
shift”. The Quick Search algorithm work like a Horspool
algorithm as well by working on one of two shifts of

Corresponding Author: Abdallah A. Hlayel, Department of Computer Information System,
Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan,

P.O. Box 130, Amman, 11733, Jordan

193

J. Applied Sci., 14 (2): 193-196, 2014

pattern. The Quick Search algorithm 1s easy to implement
and 1s very fast in practice for short and large patterns
(Charras and Lecrog, 2004).

PROPOSED ALGORITHM (WEMA)

In order to evaluate the matching process between
two strings to match the pattern “P” in the text “T7,
WEMA has two stages:

Preparing stage: This stage will produce an alphabetical
index matrix weight “M” and filling the character positions
of text “T” m the corresponding characters “M”. Each
character in “M” has weight that determine the number of
occurrences each character in the text (the number of
indices for each character).

Matching stage: The WEMA can be used to find the
exact matching between the pattern “P” and the text “T”.
Consequently, the matching stage works as follows steps:

Step 1: Create array list “L.” for the pattern “P”

Step 2: Took up the corresponding distinct characters of
the pattern “P” in “M” and then find the
minimum character weight. If the mmimum
character weight 1s equal to zero then exit the
matching process, because there is no exact
matching. Otherwise, chose the character with
the mmimum weight (if there are more than one
character having the same mimmum weights,
choose any one of them)

Step 3: Create the first attempt of the array list “T.” and

add to 1t the first index value of the minimum

weight character that obtamned m step 2 under
the first matching corresponding character

position L. (i) of the array list “T.”

Read the next and previous characters of the

pattern character position L(1) that are L (i+1) and

L(i-1), then matching with the characters of “M”

and fill to the current attempt their index values

Step 4:

that equal to the index value of the current
character position L(1)+1 for the next and equal to
the index value of the current character position
L(@)1 for the previous. If both exist, then
continue repeating this step for the next
positions in both directions until reaching the
end of the pattern “p” and getting the exact
matching

Step 5: Otherwise, create the next attempt with reading

the next mdex of the chosen mimmum weight

character in step “2" and fill it under the first

matching corresponding character position L(i)

of the array list “L”, then repeat step “4” until get
the exact matching, or until reach the last index of
the minimum weight character

RESULTS

This section introduces a business problem to clanfy
the WEMA implementation and show the obtained
simulation results.

Problem: Consider the problem to match exact
pattern P “geagegag” m the T
“gcatcgcagagagtatacagtacg”.

text

Solution stages
Preparing stage: Applying the preparing stage to create
the index matrix weight “M” as shown by Fig. 1.

This stage runs only once, as long as no updates are
available in the text “T”, m case to match more than one
pattern. Also, by using the WEMA,, the possibility of the
pattern existence before searching can be checked and
directly matching the corresponding characters with
minimum check operations through using the mmimum
weight.

Matching stage: Regarding to the matching stage, Fig. 2
depicts “step 17 of the proposed matching algorithm
which describe the process of reading the pattern “P” and
creating the array list “1.”.

Indices of the text characters
Alphabetical
characters 1 2 7 8
a(8) 3 8 10 12 15 17 19 22
b(®)
e() 2 5 7 18 23
0] 1 & ® 1 13 20 24
t4) 4 14 16 21
z(0)

Fig. 1:Index matrix weight “M” for “T” that is created by
applying the preparing stage

Pattern P = “gcagcgag”™

1
g

2
c

3
a

4
g

Position
Array list “L”

194

Fig. 2: Array list “L” of pattern “P” that is created by
applying stepl

J. Applied Sci., 14 (2): 193-196, 2014

Pattern P =*gcagcgag”

Position 1 2 3 4 5 6 7 8
Array list “L” g c a g c g a g
First attempt 2

Pattern P =“gcagagag™

Position 1 2 3 4 h) 6 7 8
Array list “1.” g c a g a g a g
First atternpt 1 2 3 -

Fig. 3: First attempt of array list “L” that 1s obtamned by
applying step 3 (filling the first index of the

minimum weight character “¢” to the first
corresponding position)
Pattern P = “gcagagag™
Position 1 2 3 4 5 7
Array list“L> g c a g a a
First attermnpt. 1 2 3

Fig. 4 Filling the next and previous indices after applying
step 4

By matching stage “step 27, the distinct characters
are g, ¢, a” and by reference to the index matrix weight
“M”, the minimum weight 1s greater than 0 and character
“¢(5)” have the minimum weight with the following indices
{2,5,7,18,20}.

Regarding to the matching stage “step 3", create the
first attempt and add to it the first index of character “¢”
under the first corresponding position of the array list “T.”
(Fig. 3).

After that, “step 47 is applied to read the next and
previous characters of the pattern character position L(1)
that are L(i+1) and L(i-1), then matching with the
characters of “M” and take their index values that equal
to the index value of the current character L(i)+1 for the
next and equal to the mdex value of the current character
L(i)-1 for the previous which is “a” and “g”. By reference
to the mdex matrix weight “M”, where the character “a”
has the indices {3, 8, 10, 12, 15, 22} and “g” has the
mdices {1, 6, 9, 11, 13, 24}, Select and add to the first
attempt the index “3” because it is equal to the current
index value +1 and the index “1” because it 13 equal to the
current index value -1 (Fig. 4).

Forwarding-up the WEMA matching stage, read the
next character position of the pattern L.(i+2) which is “g”,
where “g” has the following indices {1, 6 9,11, 13, 24},
so, there is no any index equal to the current index
L(+2)1 as demonstrate in Fig. 5 and no need to continue
this first attempt.

Finally, and according to “step 57, create the next
attempt with reading the next index of the chosen
minimum weight character m “step 2” and repeat from
“step 4, until to get an exact matching or until reach
the mimmum character weight last mdex. Figure 6

195

Fig. 5: Result for a case where matching 1s not achieved at
the end of step 4 (“g” has no index equal to the
current index T.(i+2)+1)

—

Pattern P =*“gcagagag”

Position 1 2 3 4 5 6 7 8
Array list“L” g c a g a g a g
First atternpt 1 2 3 - - - - -
Second attempt - 5 - - - - - -
Third attempt 6 7 8 9 10 11 12 13

Fig. 6: Exact matching result after applying matching
stage (three attempt are required for this example)
all possible attempts for the given problem until get
the exact matching

501

—— WEMA
- QS
404
3 30
Zz
g
= 204
10 1
0 T T 1
IM 2M 3M
File size

Fig. 7. Comparison execution time between WEMA and
Qs

shows the final result of all matching attempts, where the
third attempt got an exact matching with the pattern “P”.

Simulation resulis: The simulation have bult to
demonstrate and to compare the performance of the
WEMA with the exact string matching algorithm, the
Quick Search Algorithm (QS). Our simulation runs under
the laptop computer which having Intel® Core™2 Duo
CPU 2900 40, 4G DDR3 ram and windows XP. The results
showed high performance of the WEMA over the QS
algorithm. Three different experiments have carried out to
search for the pattern p = “geagagag” in a 3 text file size
of 1, 2 and 3 M respectively. The result showed
significant improvement m the executing time, wherein
applying the WEMA decreased the executing time

(Fig, 7).

J. Applied Sci., 14 (2): 193-196, 2014

DISCUSSION

In all exact matching techmques, the performance,
accuracy and time complexity plays major rules for
developing new algorithms of finding the exact patterns.
As mentioned above, there are many good works to
enhance the performance of the exact pattern matching
algorithms. Whereby, the QS algorithm 1s a sunplified
version of Boyer-Moore algorithm which considered one
of the fast and accurate algorithms in this field. In fact, the
Q8 algorithm and all previous studies start the matching
process directly, meanwhile the WEMA check the
possibility of the pattern existence and then start the
matching process, this will lead to eliminate unnecessary
matching process. In addition, WEMA 1s faster than QS
based on execution time which required finding the
pattern “P” in the text “T”, as shown by the obtained
results. Moreover, WEMA have roughly an equal
execution time; regardless of the text file size, because of
its direct access matching and not depends on the
position of the pattern inside the text, in the beginning of
the text as best case or in the end of the text as worst
case. WEMA have O(n) time complexity for the algorithm,
but 1t have only O(1) for the matching stage while QS
have O(n) time complexity for the algorithm and O(n) for
the matching stage.

Finally, the WEMA preparing stage for creating the
index matrix weight “M” 1s a very important step towards
speeding up the matching process, because of the
following points:

The index matrix weight “M” runs only once, as long
as no updates are available in the text “T”, to match
more than one pattermn

From the character weight, WEMA check the
possibility of the pattern existence before applyng
the matching process

From the character weight, WEMA perform fewer
operations in the matching process

WEMA apply direct access to the character position
without having to search sequentially in the text

CONCLUSION

In this study, the proposed algorithm WEMA have
been done, in order to improve the performance and

196

accuracy of the exact string matching algorithms. QS
Algorithm has applied as one of the best exact string
matching algorithms. The result showed high performance
for WEMA over QS algorithm.

ACKNOWLEDGMENTS

We would like to thank Al-Zaytoonah Umversity of
Tordan, Faculty of Science and Information Technology
for its support that enabled us to complete this study.

REFERENCES

Abed, H. and 1.. Zaoui, 2011. Partitioning an image
database by K means algorithm. I. Applied Sci,
11:16-25,

Alhaj, MM.A., M. Halaiygah, MA.A. Hashem,
A A, Hnaif, O. Abouabdalla and A.M. Manasrah,
2010. An mnovative platform to improve the
performance of exact string matching algorithms. Int.
I. Comput. Sci. Inform. Sec., 7: 280-283.

Bulbul, HI., 2007. Application of bernstein and pattern
recognition methods for speech command
recogmition. J. Applied Sc1., 7: 3063-3068.

Chalabi, 7., N. Berrached, N. Kharchouche,
Y. Ghellemallah, M. Mansour and H. Mouhadjer,
2008. Classification of the medical images by the
kohonen network SOM and LVQ. J. Applied Sci.,
8:1149-1158.

Charras, C. and T. Lecrog, 2004. Handbook of Exact String
Matching Algorithm. King's College Publications,
London, UK., ISBN-13: 9780954300647, Pages: 238.

Hudaib, A., R. Al-Khalid, D. Suleiman, M. Ttri and
A Al-Anami, 2008. A fast pattern matching algorithm
with Two Sliding Windows (TSW). I. Comput. Sei.,
4: 393-401.

Mansi, RH. and J.Q. Alnihoud, 2010. An efficient
ASCT-based algorithm for single pattern matching.
Inform. Technol. T., 9: 453-459.

Raju, S.V. and A V. Babu, 2007, Parallel algorithms for
string matching problem on single and two
dimensional reconfigurable pipelined bus systems.
I. Comput. Sc1., 3: 754-759.

Sleit, A., W. AlMobaideen, AH. Baarah and
A H. Abusitta, 2007. An efficient pattern matching
algorithm. I. Applied Sci., 7: 2691-2695.

	JAS.pdf
	Page 1

