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'Shiging Wang, *Yan Shi and 'Limin Su
'College of Mathematics and Information Sciences,
*North China University of Water Resources and Electric Power, 450045, Zhengzhou, China

Abstract: Compressed sensing seeks to recover an unknown sparse signal with p entries by making far fewer
than p measurements. The Restricted Isometry Constants (RIC) has become a dominant tool used for such
cases since if RIC satisfies some bound then sparse signals are guaranteed to be recovered exactly when no
noise is present and sparse signals can be estimated stably in the noisy case. During the last few years, a great
deal of attention has been focused on bounds of RIC. Finding bounds of RIC has theoretical and applied
significance. In this study we obtain a bound of RIC. It improves the results. Further we discuss the problems
related larger bound of RIC and give the conditional maximum bound.
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INTRODUCTION
Compressed sensing aims to high-
dimensional sparse signals based on considerably fewer
linear measuwrements. We consider:

recover

y =dp+z 1)

where the matrix ®eR™® with n<<p, zeR" 15 a vector of
measurement errors and the unknown signal PeRP. Our
goal is to reconstruct fj based on y and @.

A naive approach for solving this problem i1s to
consider L, mimmization where the goal 1s to find the
sparsest solution in the feasible set of possible solutions.
However, this 1s NP hard and thus 1s computationally
infeasible. Tt is then natural to consider the method of T,
minimization which can be viewed as a convex relaxation
of L, minimization. The T, minimization method in this
context is:

B= argr?n{”y”1 subject to |y @7, = 8} (2)
ot

This method has been successfully used as an
effective way for reconstructing a sparse signal mn many
settings. (Donoho and Huo, 2001; Donoho, 2006; Candes
and Tao, 2005; Candes et af., 2006, Candes and Tao, 2006,
2007, Cai et al., 2010a, b).

Recovery of high dimensional sparse signals 1s
closely connected with Lasso and Dantzig selectors,
(Candes and Tao, 2007; Bickel et al, 2009, Wang and
Su, 2013a-c). One of the most commonly used frameworks

for sparse recovery via L, mimmization 1s the Restricted
Isometry Property (RTP) with a RIC introduced by Candes
and Tao (2005). It has been shown that L, mimmization
canrecover a sparse signal with a small or zero error under
various conditions on &, and 0, . For example, the
condition 8,48, 10, 4<1 is used in (Candes and Tao,
20035), 85, +38,,<2 in (Candes et al., 2006), 8,0, z=<1 in
{Candes and Tao, 2007), 8,540, | 5<1 in (Cai et al,
2009) and &, ;5740 1291 in (Caief al., 2010b).

The RIP conditions are difficult to verify for a given
matrix @. A widely used techmque for avoiding checking
the RIP directly is to generate the matrix @ randomly
and to show that the resulting random matrix satisfies
the RIP with high probability using the well-known
Johnson-Lindenstrauss Lemma. (Baraniuk et af., 2008).
This 1s typically done for conditions involving only the
restricted isometry constant &. Attention has been
focused on 8y, as it is obviously necessary to have §,<1
for model identifiability. In a recent study, Davies and
Gribonval (2009) constructed examples which showed that
1f 8,,20.7071, exact recovery of certain k sparse signal can
fail in the noiseless case. On the other hand, sufficient
conditions on &, has been given. For example, 8,<0.4142
is used in (Candes, 2008), 8,, <0.4531 in (Foucart and
Lai, 2009), &, <0.4652n (Foucart, 2010), 6,<0.4721
in (Cai et al, 2010b), 8, <0.4734 in (Foucart, 2010)

and &y <0.4931 m(MoandLi, 2011). Scme sufficient
conditions on §, has been given. For example, 8,<0.307 is
used in (Cai ef al., 2010c¢) and &, <0.308 in I1 and Peng,
{2012y when k is even. In this study, &, <0.308 is given for
any k and the conditional maximum bound &, <0.5 is
obtained.
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There are several benefits for improving the bound
on &, Firstly, it allows more measurement matrices to be
used in compressed sensing. Secondly, for the same
matrix @, it allows k to be larger, that is, it allows
recovering a sparse signal with more nonzero
elements. Furthermore, it gives better error estimation in
a general problem to recover noisy compressible
signals.

PRELIMINARIES
Let |u|, be the number of nonzero elements of vector
u=(y)eR’. uis called k-sparse if |ul|;<k. For an n*p matrix
® and an integer kl<k<p, the k restricted

isometry constant §,(®) 1s the smallest constant such
that:

1= 5,00 u], = @], = Y1+ 5, (@) ul, 3

for every k-sparse vector u. If k+k' <p, the k, k' restricted
orthogonality constant 8, (@), is the smallest number
that satisfies:

(@, 00 <6, (@)l Ju, @

for all u and u' such that u and W are k-sparse and
K'-sparse, respectively and have disjoint supports. For
notational simplicity we shall write &, for (@) and 6, for
B0, (D) hereafter.

The following monotone properties can be easily

checked:
5, <8, if k <k’ =p (3
0., 56, ifksjk'sjandj+j<p (6)

Candes and Tao (2005) showed that the constants
and are related by the following mequalities:

By €8,y <6, , +max (5,,5,) (7

Cai ef al. (2010b) showed that for any a>1 and
positive integers k, k' such than ak' is an integer, then:

6, <6, ,. (8)
Cai ef al. (2010¢) showed that for any xeR™

N SRR ©)

Where:

[l = x|, and x|, = min x|
' 1€ign " 1sign

NEW RIC BOUNDS OF COMPRESSED SENSING
MATRICES

In this section, we consider new RIP conditions for
sparse signal recovery. Suppose:

y=®p+z

with |z|,<e. Denote § the solution of the following T,
minimization problem:

B= :argrr:in{“'y”l subject to |y —@y, < s} (10)
e B

The following is one of our main results of the study.

Theorem 1: Suppose P is k sparse with k>1. Then under
the condition:

8,<0.308

the constramed L; minimizer  given in (10) satisfies:

Hﬁ ﬁ“ 0.308-8,

Tn particular, in the noiseless case [} recovers P
exactly.

This theorem improves 8,<0.307 in (Cai ef e, 2010c)
to 8,<0.308 and k is even in (Ji and Peng, 2012) to any k.
The proof of the theorem 1s very long but elementary.

Proof: Let 5, k be positive integers, 1 <s<k and:

\/E 1J§
t=,—+—.]—
s 4Yk

Then from Theorem 3.1 in (Cai et a., 2010c), under
the condition 8,8, <1, we have:

JE,IHB .

2 18—!:8

By (8):

to, =10 <t s, (1)

ks k
lkss k—s

We show below that:
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Jki:{‘ngri‘ng:%Jr;&éf(x) (12)

Where:

The proof is of elementary trigonometric functions,
but it is very clever.

Lets=ksin*o, e (O,E), thenk -s=kcos’ o

So:

’ k 'JE IJ; 1 [ 1 sinc.j
e I e e e —+
k-sl¥s 4Vk cosa\ sinee 4

and decreasing when:
4

x<=

5

Thus f(x) obtains the mimmum value:
4 -
f[gj =3
That is, if k = O(mod9), let:

s=—k

then under the condition 6,<0.309 we have, see (Cai ef al.,
2010c¢):

P < Gss, (4

k
Ifkis ever, let =5 , then:
f(1)=2.250 (14

k-1
Ifk=9is odd, let®* =3, then:

f(f]sf(ﬂj <f) (15)

5 k+1

since f(x) is increasing when:

4
x=2
5
When k =7, then:
f[%:ﬁﬂ.zs? (16)
1) 24
Whenk = 5, then:
—f( 221 17
£x) f(sj NG 2,245 (17)

When k = 3, we note from the remark of Theorem 3.1
in {(Cai et al., 2010c) that in these cases s = land t=+k ,

then:
L:,f é, (18)
t\/; 3‘j; 2121

From (11-18) yield:

3,10, £3.255, <1
2

if k 1s even and:

BHO , 3258, <1
=

if k 15 odd. With the above relations we can also
get:

W2, 1135, o E

Hﬁ—ﬁ|2 g1—81(—tek§ ~0.308-5,

Corollary 1: Suppose P is k sparse with k = O(mod9).

Then under the condition §,<0.309 the
constrained 1., minimizer J given in {10)
satisfies:
~ z
HS_E'H: = 0.309-5,

Tn particular, in the noiseless case [} recovers P
exactly.
The proof sees (11-13):
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Corollary 2: Suppose P is k sparse. If k>9 is odd, then
under the condition &,<c, the constramed L, mimmizer {3
given in (10) satisfies:

b=
Where:
44k —1
€, =———
4k -1+9k-1

In particular, in the noiseless case i recovers P
exactly. The proof sees (11-12) and (15). Note that
0.308<¢,<0.309 from (15).

To the best of our knowledge, this seems to be the
first result for sparse recovery with conditions that only
involve §, and k. Tn fact, only invelving &, k and only
mvolving 8, are equivalent.

THE CONDITIONAL MAXIMUM BOUND FOR RIC

Leth = f-p. For any subset Q= {1, 2, ..., p} we define
hg, = hl,, where 1, denctes the indicator function of the set
Q,ie. Iy =1ifjeQand 0if j#Q. Let T be the index set of
the k largest elements (in absolute value) and let £ be the
support of B. The following fact which is based on the
minimality of B, has been widely used (Candes et al,
2006):

gl =[], (19)
We shall show that:

[he], = |b | (20)

o], =[], (21)

In fact;
[l + e |, = ], = g, + i

el

and T has the k largest elements (in absolute value)
and € has at most k elements, so we have by (19

el = na], = [, 2o

And:

g <l o, <t P <

1l

Definition 1: Let T, be the index set of the m largest
elements (in absolute value). The set T, is called a sparse
index set, 1l

=
Tully _Hh

o Hl

and mzk.
Tt is obvious that the sparse index set exists. In fact
T, 1s a sparse index set since:

hTth

e

Here we prove that any sparse index set T instead of
T, ., Theorem 3.1 in (Cai et al., 2010c¢) can be improved.

Theorem 2: Suppose P is k-sparse and T, is sparse index
set. Let k;, k,, be positive integers such that k,>m and

8(k,-m)zk,. Let:
-
1

Then under the condition &,+0k, k,<1 the L,
minimizer defined in (10) satisfies:

W2 i+,
£—7—%¢

2718, —to,

2(k m)

In particular, in the noiseless case where v = ®f, L,
minimization recovers P exactly.

Proof: For any sparse index set T, let 5,=T,, be the index
set of the k, largest elements (i absolute wvalue).
Rearrange the indices of 5°; if necessary according to the
descending order of |, i=8; .. Partition 5% into:

SE:ZSJ

izl

where [S|=k;, the last S, satisfies |S|<k,. If h;, =0, then
the theorem is trivially true. So here we assume that
hs =0 Then it follows from (9) that:

Sl 2 b nf S, Il

SFZ\ sl
2 =
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J5

+ h
L4

5

e

=

Ay,
4 | Sl|m

)+

I

-kl

k
il .
1
=E( 5o [y -2 SuﬂTmH 4

h,

hS[I L 31 ks

h, w)+‘\/g

4

<
- el 2
[J‘ Vi 205 m)z

NN SN

5 [l

I

hs, L=

o5

Now:

[(@h,@h )= |(@h, ,ohy )+ Z((Dhsi, CDhSD)

E(I—Bkl) Sg z_ekl,k; hSu ¥y tekl:ki) hSO z
Note that:

Jeoh ], < oy, +[0p- 3], <22

[{h, @b }| < |@h],|oh,

, iZE,/ +8y

hs, [

Also the next relation:

2 2
< 1 zllg

h, || <

h

Bl ~ T; Tallz iz

1 m

umnplies:

Inf;=

Sn

Putting them together we get:

W2, fl+35, ]

2515, 19,

[h], < 2|

3

If let m = k, then Theorem 2 is Theorem 3.1 in (Cai et al.,

2010c).

TLet my=zm be

that:

smallest positive integer so

o | =g |
Then we have.

Theorem 3: Suppose [ is k-sparse. Let k,, k, be positive
integers such that k, >k>m; and 8(k,-m;)<k,. Let:

‘j: 1 Jiz(k m)

Then under the condition 8-+t0,, ,, <1 the L,
minimizer defined in (10) satisfies:

J_ +8
|-, f‘g‘iﬂi%fz

Tn particular, in the noiseless case where v = ®f, L,
minimization recovers P exactly.

The proof is similar to of Theorem 2.

Note that k 13 independent of h, but m and m, are
dependent of b, 1.e., m = m(h) and m, = m,(h).

The following 1s one of our main results of the study.
Tt is the consequence of Theorem 2.

Theorem 4: Suppose [ is k sparse with lk=1. If
k = O(mod 5) and Tys 1s sparse index set, then under the
condition §,<0.5 the constrained L, mimmizer § given in
(10) satisfies:

3
0.5

Yk

Ip-fl, <

€

In particular, in the noiseless case [ recovers P
exactly.

Proof: Ifk = O(mod 5) and Ty, is sparse index set, then in
Theorem 2, set:

Thus:

A

Then under the condition:

2296



J. Applied Sci., 14 (19): 2292-2298, 2014

8, +8,, <1
T s
we have:
2\]27 + 8,
A e— ¥ 5
il sy e
5 535
By (5) and (7) we get:
8,+0,, <28, <1
3 375
In this case:
2-\5 + 8,
[ LI 2V EEN 5
218, -0, 1-28, 0.5-8,

H i

An explicitly example in (Cai et al, 2010c) is
constructed in  which §<05, but it 1s impossible
to recover certain k sparse signals. Therefore,
the bound for §, cannot go beyond 0.5 in general in
order to guarantee stable recovery of k

signals.

sparse

CONCLUSION

We recognized that ||h,||, may be greater than ||hy|,
too much. Since ||hy|, (1<s8<k) all may be greater than |/hg||,
and |y, is the largest of ||h | ,(1 <s<k). We want to find
a ||| (1<8,2k) such that |[hy |, < |[hmll;. On the other hand,
the bound m (11) 1s function of &,. This makes the bound
cannot more tight since d, is fixed. So we propose an idea.
That 1s, the bound i right side hand is function of &s,
where s<k From €Q and T immediately deduce
four mdex sets nT, ONT, ONT° and O'NT° and
m,=|QNT| = k-|ONT|, m, = [QnT|, m; = [QNTY <k-|QNT|.

Tt is easy to show that the bound of Theorem 2 is
tighter than the one m (Cai et al., 2010¢) under special
cases. See the following examples.

Example 1: Suppose B is k-sparse and n>0. Let:

L
n 4Y¥q

If Q= T,, then under the condition §,+t.0, <1 the L,
mirmmizer defined in (10) satisfies:

b= g

= g
2 1-8 -tf

Tn particular, in the noiseless case where v = ®f, L,
minimization recovers P exactly.

In fact, the proof 1s similar to of Theorem 2 and note
that:

2

[M[E = b [ < n.

2 2
b [+, <2,

I [

Example 2: Suppose P is k-sparse and n=0, where k is
even Let:

tzﬁﬁ-\/ﬁ
foan 2k

If [ONT| = /2, then under the condition:

5, +6,, +1,8, <1
7 77 7

the L, mimimizer defined m (10) satisfies:
4e fl+8
B

L 71_51: _Gick _tdaicn
PR P

<1

|8-5

The proof is similar to of Theorem 2.
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