Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 14 (20): 2487-2497, 2014
ISSN 1812-5654 / DOL: 10.3923/ja8.2014.2487.2497
© 2014 Asian Network for Scientific Information

Deployment of New Dynamic Cryptography Buffer for SCADA Security Enhancement

'A. Shahzad, 'S. Musa, M. Irfan and *S. Asadullah
"Malaysian Institute of Information Technology (MIIT), 1016,
Jalan Sultan Ismail, Universiti Kuala Lumpur, 50250, Kuala Lumpur, Malaysia
*Windfield College, Paser Seni, Kuala Lumpur, Malaysia
*Kulliyah of Information and Communication Technology, International Islamic University, Malaysia

Abstract: The current study 1s based on novel solution which deploy the security mechanism, more advance
cryptography solution within Distributed Network Protocol (DINP3) stack as a part of critical system (or SCADA
system). The “Dynamic Cryptography Buffer (DCB)” has been implemented that contains 56 bytes from total
size of “Application Protocol Data Unit (APDU) bytes™ as a part of application layer of DNP3 protocol. The
DCB contains several fields/subfields which have been used during implementation of cryptography algorithms

and other information (or detail) related with protocol security. During implementation within DNP3 protocol,
the bytes are dynamically stored after processing (security deployment) within DCB, without affecting the total

size of DNP3 protocol stack. This novel study gives new directions for SCADA or its protocels security

deployment and enhancement.

Key words: DNP3 protocol stack, DNP3 protocol security, dynamic buffer, dynamic bytes, cryptography

algorithms, performance results

INTRODUCTION

The SCADA system has been used several protocols
“such as profibus protocol, modbus protocol, DNP3
protocol, foundation fieldbus protocol, TEC 60870-5
protocol and other series, modbus plus protocol and data
highway plus/DH-485 protocol™, for the purpose of
industrial automation and processing. Each protocol has
distinct specifications during installation, configuration
and transmission services. The Distributed Network
Protocol (DNP3) 1s most important and famous protocol
that has been used m industrial processing (or SCADA
processing) (Shahzad and Musa, 2012; Shahzad et al.,
2013).

The DNP3 protocol has contains four layers included
“application layer, pseudo-transport layer, data link layer
and physical layer”, in its stack and used “Transport
Control (TCPAP)”
mtermnet. The application layer of DNP3 protocol takes

Protocol/Internet Protocol over
random bytes from upper layer (user application layer)
and able to process 2048 bytes to lower layer. The each
size of Transport Protocol Data Unit (TPDU) is up
to 250 bytes with header byte while data link layer 1s
able to receive 250 bytes from pseudo-transport
layer and transmit 292 bytes with 32 Cyclic Redundancy

Checker (CRC) bytes to physical layer included
10 bytes of header (Musa ef al.,, 2013a, b; Shahzad et af .,
2014a).

NEW DNP3 PROTOCOL SECURITY STACK

The new DNP3 protocol security stack has number of
fields/subfields which are utilized during cryptography
implementation (proposed implementation). The detail

related with fields/subfields 1s as followed.

Source address and port: This 15 2 bytes (unassigned)
field within stack which identifies the source address and
port, either master station send request or remote station
send response.

Destination address and port: This is also 2 bytes
(unassigned) field within stack which identifies the
destination address and port, either master station
received response message or remote station received
request message.

User bytes: This field defines the bytes (user bytes) that
are bemng used by security (proposed solution)
implementation within each layer.

Corresponding Author: A. Shahzad, Malaysian Institute of Information Technology (MIIT), 1016, Jalan Sultan Ismail,
Universiti Kuala Lumpur, 50250, Kuala Lumpur, Malaysia
2487

J. Applied Sci., 14 (20): 2487-2497, 2014

¢ User bytes: Application Protocol Data Unit (APDU)
size 15 up to 1992 bytes and Application Protocol
Control Information (APCT) is 2 or 4 bytes within
APDU, case of request or response

¢ User bytes: Transport Protocol Data Unit (TPDU) size
15 up to 250 bytes and Transport Protocol Control
Information (TPCT) has 1 bytes within TPDU, both
request and response message (bytes)

¢ User bytes: Link Protocol Data Unit (LPDU) size is up
to 292 bytes (with optional CRC bytes) and Link
Protocol Control Information (LPCT) has 10 bytes
within LPDU, both for request and response

Cryptography key sequence: This is 4 bytes (unassigned)
subfield within stack (cryptography implementation field)
and used to keep the track of cryptography keys during
message (bytes) generation within each layer of DNP3
protocol. Each time security 1s implemented in layers
include application layer, pseudo-transport layer and data
link layer (Musa et af., 2013a; Shahzad ef af., 2014b),
cryptography counter is updated and value is added in
cryptography key sequence field. The two flags are used
within each layer to monitor the status of security
(cryptography implementation). More detail 1s depicted in
Table 1.

This field also keeps the record of message (bytes)
during communication. Fach time message (bytes) is
transmitted to remote station, counter 13 incremented by
one and value is update in cryptography key sequence

field.

Dynamic storage (bytes): This 13 dynamic byte subfield
within stack (cryptography implementation field) and used
to store cryptography implementation information. In
start, this subfield occupy 16-56 bytes within stack, either
message (bytes) request or response. In case, dynamic
buffer is full and acquired additional space for
cryptography mmplementation than CRC (32 bytes) from
data link layer are used for additional bytes storage.

Optional (bytes): This is 2 bytes (unassigned) subfield
within stack (cryptography implementation field) and
usually implemented at the end of DNP3 stack or when
message 1s ready to transmit (request or response). This
subfield is used to verify all contents during message
(bytes) generation process.

Padding bytes: This subfield occupies dynamic bytes
within stack (cryptography implementation field). Tn case,
dynamic buffer has extra memory space than this space 1s
filled with padding bytes. This function indicates that
message (byte) has been constructed and ready for
transmit (send or response) to desire station.

Table 1: Cryptography key sequence stats

Flages Status

APDU: Flag (0) APDU bytes: Security_fail or status unknown

APDU: Flag (1) APDU bytes: Security _successtitl or status successtul
TPDU: Flag (0) TPDU bytes: Security_fail or status unknown

TPDI: Flag (1) TPDU bytes: Security successtitl or status successtul
LPDU: Flag (0) LPDU bytes: Security_fail or status unknown

LPDU: Flag (1) LPDU bytes: Security successtul or status successfinl

Acknowledgment: This is 2 bytes (unassigned) subfield
within stack (cryptography implementation field). During
communication, master station send request message
(bytes) with acknowledgment flag (set) than upon
recelving, remote station also send acknowledge message
to mater station, not data.

¢ ACK, flag (0) Indicate master/remote station
commumnication without acknowledgment
» ACK, flag (1) Indicate master/remote station

communication with acknowledgment

Critical (bytes): This is optional 1 bytes (unassigned)
subfield within stack (cryptography implementation field).
In case, attacks are successfully within communication,
this field shows the status or system behavior.

Non- critical (bytes): This i1s optional 1bytes (unassigned)
subfield within stack (cryptography implementation field).
In case, attacker attack but not successfully within
communication, this field shows the status or system

behavior.

Solution (select method): This is one bytes (unassigned)
subfield within stack (cryptography implementation field)
and used to identified which cryptography method is
currently using for SCADA/DNP3 security (depend on
requirement). Figure 1 illustrates the new DNP3 protocol
security stack wlule Table 2 shows the detail
fields/subfields description of new DNP3 protocol
security stack.

RESULTS AND DISCUSSION

Dynamic buffer utilization and command request (bytes):
The below APDU bytes (MTU request), logical 98 bytes
(request dummy bytes) have been transmitted from MTU
(sender) application layer to RTU (receiver) application
layer. The below bytes (MTU application layer) are the
request message being transmitted from MTUJ to RTU
while the heighted bytes show the Application layer
Header or AH mformation, object header information and
security information. The other heighted byte, 0x00¢3 1s
application control information and 0x0001 1s the function
code (uses for read request).

2488

J. Applied Sci., 14 (20): 2487-2497, 2014

Source address Destination address
APCI (send)] 8
APCT (responsd) TPCI LPCI 8
o
CRC B
APDU TPDU LPDU (optiondl) 2
Cryptography key sequence 7
8
T
Cryptography (bytes): Dynamic storage (bytes) =
S
b
Option (bytes) Padding (dynamic bytes) %
=3
Acknowledgement £
>
<
Non-critical (bytes) Critical (bytes) g
z
Solution: Select method O
Fig. 1: New DNP3 protocol security stack
Table 2: Fields/subfields description: New DNP3 protocol security stack
Protocol (stack) fields Protocol (stack) sub fields Total bytes Description
Source address and port 2 bytes (unassigned) Source/destination fields
Destination address and port. 2 bytes (unassigned)
APDU Request APCI: 2 bytes 1992 bytes User fields (bytes)
Response APCT: 4 bytes
TPDU Request/response TPCT: 1 byte (each) 250 bytes
Request/response LPCT: 10 bytes (each) 292 bytes

CRC (optional): 32 bytes
Dynarmic cryptography buffer ~ Cryptography key sequence: 4 bytes (unassigned) Original size: 56 bytes included Cryptography implementation fields

Dynarnic storage: 16-56 bytes source and destination bytes
Optional: 2 bytes (unassigned) During exception: Original bytes
Padding: 2 bytes (unassigned) added with CRC bytes

Acknowledgement: 2 bytes (unassigned)
Critical: 1 bytes (unassigned)

Non-critical: 1 bytes (unassigned)

Solution: select method: 1 bytes (unassigned)

Request APDU bytes (logical) are presented as The bytes such as:
follows:

OSh000-Ronos- Coozx. B OS000-Ronns- Coose. B
ae 2b 8d 6¢c 8d 6¢c af ca ee ee 98 Od ba cc e 6¢ of 0090+ +0008: S DAL 0 0HE__ =7 0090+ FH0008: D0 00T

fa 8 ba ea fa 6c a2 b8 le ¢f Od ba ea fa a7 ba cf (APDU bytes)
fa ca ee cc a2 aa 4c le ¢f 0d 2b 8d 6¢c af le 8d 34
dc 2b ba ea fta 4dc fe le cf Od ef ta 2b ba éde a7 ba

0d cc ba ea fa a7 6e ec 2b ba ea fa aa ca bf ca f ©Sois0-Rome Comer Bosee O Sois0-Ronos: Consee Bones

¢3 0l ie 02 00 04 07 le ec la ee 2a ee (TPDU bytes)
and:
The bytes, 0x00ie and 0x0002 are designated for group
and variation fields. The byte, 0x0000 13 qualifier field OS0200 Rooos-Conzxe- Booxx O Sozs0-Ranos- Coosez- Boosex
which is used both in request/response message while (LPDU bytes)

data object are acquired (needed) from contiguous

indexes. The bytes, 0x0004-0x0007 are designated for with offsets: 0x0090, 0x0190 and 0x 0290 are designated for
range fields. The remaining bytes 0x001 e, 0x000ee, 0x001a, dynamic buffer implementation while bytes:

0x00ee, 0x0002a and 0x00ee are the cryptography

information (bytes) which have been utilized for security OS5 Rz Conzesr-Booso__OSa100 - Ranns- Conzx B
umplementation. (APDU bytes)

2489

J. Applied Sci., 14 (20): 2487-2497, 2014

APDU bytes
TPDU bytes
2100 LPDU bytes
2000 ——— Dynamic buffer bytes
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

Bytes utilization

- ©
© o©

21
26
31
36
41
46
51
56

© «H O o
~N 0 o o

96
101
106
111
116
121
126
131
136
141
146

No. of successful experiments

Fig. 2: Bytes allocation for dynamic buffer during communication

OSUZUU'RUUUF' CUUXX'Bﬂﬂﬂﬂio SUZUU'RUUUE' CUUXX'BUUXX
(TPDU bytes)

and:

OSU3UU'RUUUB' CUUXX'Bﬂﬂﬂﬂio SU3UU'RUUUP' CUUXX'BUUXX
(LPUD bytes)

are regerved for future (implementation). Where, XX “are
the numbers of bytes utilized (added), upon the
requirements of dynamic buffer implementation.

At the time of mitialization (MTU request/RTU
response), the size of dynamic buffer is 56 bytes and
application layer (APDU) buffer is able to store 1992 bytes
in both request and response message. I[f APDU size 1s
less than 1992 bytes, than the remaimng bytes will
dynamically allocate for dynamic buffer (used to store
information related with security implementation). If the
dynamic buffer 1s full, mean that cryptography mformation
has been stored successfully and still memory (space) 1s
remaining within buffer. Then remaining space will fill with
padding bytes, to create full packed APDU fragment
with security (cryptography solution) implementation.
Figure 2, shows the number of bytes utilization process
within proposed DNP3 security stack with dynamic buffer
bytes.

In Fig. 3, dynamic buffer size (bytes) has been
mcreased as decreasing of APDU size (bytes) within

DNP3 stack while Transport Protocol Unit (TPDU)
and link protocol unit (LPDU) bytes are stable (constant)
as 250 bytes and 292 bytes or assume that TPDU and
LPDU bytes are fixed for each process (testbed
experiment).

In Fig. 3, red markers show that 8 times dynamic
buffer has been full and acquired extra memory space for
cryptography implementation (storage). In this case,
exception message has been executed and than 32 bytes
from CRC (data link layer, user data blocks only) are
shifted (move) to dynamic buffer (memory space). Thus,
these 32 bytes are further utilized for cryptography
deployment within DNP3 protocol. Figure 4, shows the
dynamic buffer status while usage of extra 32 bytes from
CRC (data link layer, user data blocks only).

RESULTS AND DISCUSSION

Dynamic buffer utilization and command response
(bytes): The below bytes (RTU response), logical 107
bytes (response dummy bytes) have been reply back
logically from RTU (sender or response) application layer
to MTU (receiver) application layer. The below bytes
(RTU application layer), are the response (bytes)
transmitted from RTU to MTU while the heighted bytes
show the application layer header or AH information,
object header mnformation and security information
{(proposed solution).

2490

Bytes utilization

-

©

-
—

©
—

J. Applied Sei, 14 (20): 2457-2497, 2014

APDU bytes
TPDU bytes
LPDU bytes

Dynamic buffer bytes

Y
¥} h
¥
!
LY
AN T -
L7 L1
f] }
£ L
v "
! i
rl.
k. |
[H’
i |
i
'i-',:_
bt b i
"‘l S
| ||i.lii|i|||ni
— © — (=] — ©) [{e} — [(=] i ©) [{e} — [(=] - © — © - © — ©
N N [s2} o™ < < n n © © ~ ~ [ee] [es] [«2] () o o — — N N 2] (3]
— — — — - - — —

No. of successful experiments

Fig. 3: Dynamic buffer bytes status (with exception) during commumnication

2100,

2000 =M

1900
1800
1700
1600-|
1500
1400
1300
1200
1100
1000
900 |
800 —
700 |
600 —
500
400 |
300 —
200 -
100 —

0
—

Bytes utilization

©

—
—

©
—

APDU bytes
TPDU bytes
LPDU bytes

Dynamic buffer bytes

o © d © «+d ©O©W «HG © «+d © «H O I ©
N N O O F < O 1O © © N~ N~ 0 ©

No. of successful experiments

Fig. 4: Dynamic buffer bytes status (without exception) during communication

2491

J. Applied Sci., 14 (20): 2487-2497, 2014

RTU response (byles)

Source address: Logical port No. Destination address; Logical port No

189.223.211.158:2050 189.223.211.133:2010

Session

N\
v

ST e p—

03000 $RW/CLICLO} CLI3CL2§ CL3§ CLAFCLS} CL6| CL7} CLSRCLY FLIOCLINCLI2XLINCLIGCLISCLIG

RO 0T ee 0 11 of cc ee bl a7 ba ee le S ocl e o 55 0
o PO S e R

GO 5w 22 b2 @ 84 B e @ 2 26 4 B8 AT o a1 by
GO R b 48 ol ca B R e oad 89 2 e w2 B o oo
GOS0 e @ oac M B G oo b 6o bc of a e b 0 00
WA b 84 G ol @ e oo w2 oa B 98 0d o 8

Wil w w0 0 o e e w o

000X JX0K8 XX D08 100 00T XXTXOC T XCTOC 10 XX T XX XX D

y

Limitcd-transport

MTU request (bytes)

Souree address: Logical port No. Destination address: Logical part No.

189.233.211.133:2010 189.233.211.158:2050

Session

\4

T I APDU ith Enryption byes

| CLOECLTECIO CL3 CLATCLS! CLG CL7ACLAACLY FLIOCLIL KL 1 LIACLISELLG
b K R 84 Re A @ e 98 04 ba & 60 66 o
G ba f R 6 a2 B8 le o 00 ba e fa a7 b o
Tl e e @ @2 m e ode o 04 B Bd 6e af Te B4
T4 » bo@ B4 ke ode o 04 of B B b oG a7 b
O e b 02 B a7 6 o b ba @ R m o b o
G ol i 00 00 04 07 de e la % e f

ONO90 TRWE T<x %% § NN 44N ¥ NN TN SN PNY 8 NN ENY UNY BNX AN PNN BN ANN PNV BN BN

T | WO

Limited-transport
layer

i ke TPDU with Encryption bytes ff}; ometigican) TPDU with Encryption bytes
03000 RW/CLICLO § CLI 1CL2§ CL3 1 CL43CLS 1CL61CL7 1CL8 1 CLO ICLIBCLICLIXCLISCLICLISCL 0x000 JRW/CLYCLORCLI §CL2 JCL3 JCL4 §CLS JCL6 3017 § CLRY CLOFLI0JCLIGCLI 1133011 4CL1SCL CLuf
O S T S T ba ba a7 a7 b de o 04 e o i 3b WY RWOR 0 % b8 b fe ba fe ba ba de de le ba o b of
4 [R . L B R N VA A N Y
TRV G s 2 b o ba 8 e @ a7 ba fo B8 B e gy gy N B B8 B b L b & ba b dc b ba koo ba oo I
MR b e oo e of 2 o b8 B S 6e dc 2 o ac of e @A dc a7 4 a7 of a7 of £ b0 b b B 8 co 48
RVFIC c e ba M4 ba 5o ba Ge 6 of e bf B fo b8 £ ba fe ba fe ba ba le ba of ba ba ba_of fo
RVSil e 2 of af of @ c 2 @ N9 o b w fob BB B e e e 2 e
RV e 16 e 0 e e e [
O T T | o T T B Tk T T T oo T T o [Tk SRS TSRS TS S S S S S S S S
10 -47 Resenved
Data fink layer
emeney g
Y) APDU with Encrypion byles Tngicy JuicaD LPDU with cncryption bytes
03000 SRW/CLECLO § CL13CL2§CL3 L4} CLSACLG §CL74CLR §CL9 FLIOCLIYLI23CL LI LISEL 1 1CLn. osooo_ wcLy i [eui ez cus i ecs| cle] i eLs[elfLiderjeiferifeifeLijend Jeia
SIS TR T E w77 Lo 6d e ba o ba b do 8 S e - T R e S B S A R
QRDadBWIad ol 0f e of f B8 B 77 6 e S e BB 48 b e LPDU request/response (bytes) DOAFERVIR 0 9% e 98 bu 9K B g9 98 48 <o 45 co 4 ba ce
e IR A S e VI B (it R L
e 7 S S T St [Gemmmemmenmmeemee > T AN e B w08 B % D w8 8 e B e 88 W o
S0aaBWJagca fa a7 ba g e b8 e ca ac bl ac of 6c bl c ca o o b3 3 ee M of e [cf ba ba b2 ba 8 b2
v RUSadec B8 B ba cc oo ba ba e a7 fe a7 2b e ad 09 e 2 G o8 B 0 05 6 55 of O O 8 8 o
SO0 BWGfoe o 9 o Ge b 05 S5 o 0 6w om o o oo Lo gRuola e do e 0 o f
0080 3 RWT § o1 ee [TR
L S S O S SO S T S S T Y G S S S IR SN U SRR IR R e X m oo e o o e e oc oo o
R3S Hiondd WLy SRYY Reseryed.

Physical ayer D > Physical layer

!

Fig. 5: Communication between DNP3 protocol stack (request/response bytes)

Response APDU bytes (logical) are presented as
follows:

ee ff aa cf ccee bf a7 baee le 51 ¢l cc of 5513
cl 1f ee ee ff 6e a2 b8 6c ea bf 48 8d b2 48 ba of
fa aa 22 b2 fa 81 2b ea fa 2b 2b 4c b8 a7 le 8d M
78 b8 48 ¢l ea2b fe ee ad 69 2b ea a2 2b cc a7 ba
0d cc ca ae 1413 6e ec ba 6e 6c of aa ca bf ca of
fe 2b 8 6¢c af ca ee cc a2 aa f3 98 0Od ¢3 8 00 00
le 02 00 04 07 el ee al ee a2 ee

The heighted byte, 0x00c3 1s application control
mformation and 0x0081 is the function code (used for
send response). Additional, two bytes 0x0000 and 0x0000
have been added within response message that
distinguish the response message (bytes) header from
request message (bytes) header. The internal indication or
TIN (In response header fields) is two bytes fields follow
by function code and used to send response message to

master station. Each bit within IIN fields (11N, 5, 11Nz, -
and 11Ng;q 11Ng;5) has specific meaning of sending
response message.

The dynamic buffer implementation and bytes
utilization process within response message (bytes) is
identical as request message (bytes). Mean that whole
dynamic buffer process is same within request and
response message (bytes).

The bytes, 0x001e and 0x0002 are designated for group
and variation fields. The byte, 0x0000 15 qualifier field
which 1s used both m request/response message while
data object are acquired (needed) from contiguous
indexes. The bytes, 0x0004 0x0007 are designated for
range fields. The reaming bytes 0x00el, O0x000ee, Ox00al,
0x00ee, 0x000a2 and Ox00ee are the cryptography
information (bytes) which have been utilized for security
implementation (proposed). Pseudo-transport layer and

data link layer specifications of response bytes

2492

J. Applied Sci., 14 (20): 2487-2497, 2014

Table 3: Transfer functions bytes with cryptography implementation

MTU/RTU Application | Function Internal Object field Qualifier Range Encryption bytes Padding bytes
Communication Control Code Indication (optional)
(AC) (FO) (IIN)

0H0000(hex) IIN,, | TIN,,| Group | Variation Start | Stop

Read function
MTU request c3 01 le 02 00 04 07 le | ee | la | ee | 2a | ee
RTU response c3 81 00 00 le 02 00 04 07 el | ee | al | ee | a2 | ee

Write function
MTU request c3 01 32 01 07 01 le [ee [la | ee [2a | ee
RTU response c3 81 00 00 el | ee | al | ee | a2 | ee
Table 4: Control_functions bytes with cryptography implementation
MTU/RTU Application | Function Internal Object field Qualifier Range Encryption bytes Padding bytes
Communication Control Code Indication (optional)

(AC) (FO) (IIN)

0H0000(hex) 1IN, | 1IN, | Group | Variation Start | Stop

Select function
MTU request c3 03 oC 01 17 01 le | ee | la | ee | 2a | ee
RTU response c3 81 00 00 ocC 01 17 01 el | ee | al | ee | a2 | ee

Operate function
MTU request c3 04 oC 01 17 01 le | ec [la | ee [2a | ee
RTU response c4 81 00 00 ocC 01 17 01 el | ee | al | ee | a2 | ee
Direct operate function
MTU request c3 05 oC 01 17 01 le | ee | la| ee | 2a| ee
RTU response c3 81 00 00 ocC 01 17 01 el | ee | al | ee | a2 | cc
Direct operation function, no anknowledgment

MTU request c3 06 ocC 01 17 01 le | ee [la | ee | 2a | ce
RTU response c4 81 00 00 oC 01 17 01 el | eec [al | ee [a2 | cc

(message construction) have been remain same in both
cases; in the case of MTU send request to RTU or RTU
send response to MTU. Figure 5 illustrates the logical
communication of DNP3 protocol stack (Layers) between
request bytes and response bytes.

DNP3 application layer has specified numbers of
function codes (dnp.org) followed by Application Control
(AC) field that has been added within message (message
header) during MTU/RTU or RTU/MTU communication.
Function codes define the specific function for data
(bytes) being operated or what function to be operating
on data. Some functions are limited for specific data
(bytes) on which, they are operates. Table 3-9 show the
several functions deployment (utilization) in both cases;
In the case of MTU send request to RTU and RTU send
response to MTU (DNP3, 2005). Function codes are
added within application layer header or AH without
interaction of pseudo-transport layer and data link layer.
The highlighted or colored cells in Table 3-9 show that the
specified operations are
SCADA/DNP3 transmition.

not
The

employed during
application layer

functions deployment within message (request and
response) has been distributed into following main
parts:

The function bytes (codes) 0x0000, 0x0001 and
0x0002, are the transfer functions bytes (codes).
These functions define data objects for transferring
mformation (data) between master station and remote
station (Read function) and/or remote station and
master station (Write function). Table 3 show the
deployment of transferring functions bytes (codes)
m both MTU send request (message) and RTU
send response (message) with security bytes
(eryptography solution)

The function bytes (codes) O0x0003, 0x0004, 0x0005
and Ox0006 are the control functions bytes
(codes). These functions are used to manage
(operate) control points
(coming from field devices) depending on
request. Table 4, show the
deployment of control functions bytes(codes) in both

remote station

master station

2493

J. Applied Sci., 14 (20): 2487-2497, 2014

Table 5: Freeze_functions bytes with cryptography implementation

MTU/RTU Application | Function Internal Object field Qualifier Range Encryption bytes Padding bytes
Communication Control Code Indication (optional)
(AC) (FC) (1IIN)
0H0000(hex) IIN,, [1IN, | Group [Variation Start | Stop
Freeze function
MTU request c3 07 14 00 06 le | ee | la | ee | 2a | ee
RTU response c3 81 00 00 el | ee | al | ee | a2 | ee
Freeze function, no acknowledgment
MTU request c3 08 14 00 06 le|ee | la|ee| 2a] ee
RTU response c4 81 00 00 el | ee | al | ee | a2 | ee
Freeze and clear function
MTU request c3 09 14 00 06 le | ee [la | ec | 2a | ee
RTU response c3 81 00 00 el | ee | al | ee | a2 | ee
Freeze and clear function, no acknowledgment
MTU request c3 0A 14 00 06 le | ee | la | ee | 2a | ee
RTU response c4 81 00 00 el | ee | al | ee | a2 | ee
Freeze function-AT-Time
MTU request c3 0B 32 02 07 01 le | ee [la|ee|2a]ee
RTU response c3 81 00 00 | el | ee | al | ee | a2 | ec
Freeze-Time-AT function, no aknowledgment
MTU request c3 0cC 32 02 07 01 le | ee [1a]| ee [2a | ee
RTU response c4 81 00 00 | el | ee | al | ee | a2 | ee

Table 6: Application_control_functions bytes with cryptography implementation

MTU/RTU Application | Function Internal Object field Qualifier Range Encryption bytes Padding bytes
Communication Control Code Indication (optional)
(AC) (FC) (1IN)
0H0000(hex) 1IN, | 1IN, [Group | Variation Start | Stop
Cold-restart function
MTU request c3 0D 34 00 07 01 le | ee | la | ee | 2a | ee
RTU response c3 81 00 00 34 00 07 01 el | ee | al | ee | a2 | ee
Warm_restart function
MTU request c3 0OE 34 00 07 01 le | ee | la| ee | 2a]| ee
RTU response c4 81 00 00 34 00 07 01 el | ee [al | ee [a2 | ee
Initialize_data function
MTU request c3 OF 32 02 07 01 le | ec [la | ee [2a | ec
RTU response c3 81 00 00 I el | ee [al | ee [a2 | e
Initialize_application function
MTU request c3 10 5a 01 5b 01 le | ee | la | ee | 2a | ee
RTU response c3 81 00 00 I el | ee | al | ee | a2 | ee
Start application function
MTU request c3 11 Sa 01 5b 01 le | ee [la | ee | 2a | ee
RTU response c3 81 00 00 I el | eec [al | ee [a2 | cc
Stop application function
MTU request c3 12 Sa 01 5b 0l le | ee | la | ee | 2a | ee
RTU response c4 81 00 00 I el | ec [al | ec [a2 | ec

MTU send request (message) and RTU send * The function bytes {codes) 0x0007, 0x0008, 0x0009,
response (message) with security bytes 0x0004, 0x000B and 0x000C are the freeze functions
{cryptography solution) bytes (codes). These functions are used to record

2494

J. Applied Sci., 14 (20): 2487-2497, 2014

Table 7: Configuration_functions bytes with cryptography implementation

MTU/RTU Application | Function Internal Object field Qualifier Range Encryption bytes Padding bytes
Communication Control Code Indication (optional)
(AC) (FC) (IIN)
0H0000(hex) IIN, | IIN, | Group | Variation Start | Stop
Save configuration function
MTU request c3 13 Sa U Sb 01 le | ee | la|ee | 2a| ee
RTU response c3 81 00 00 I el | ee | al | ee | a2 | ee
Enable_unsolicited function
MTU request c3 14 32 01 07 01 le | ec [la | ec [2a | cc
RTU response c4 81 00 00 el | ee | al | ee | a2 | ee
Disable_unsolicited function
MTU request c3 15 3¢ 02 06 le | ee | la | ee | 2a| ee
RTU response c3 81 00 00 el | ee | al | ee | a2 | ee
Assign class function
MTU request c3 16 3¢ 02 06 le | ee [la | ec [2a | ec
RTU response c4 81 00 00 el | ee | al | ee | a2 | ee
Table 8: Time_synchronization functions bytes with cryptography implementation
MTU/RTU Application | Function Internal Object field Qualifier Range Encryption bytes Padding bytes
Communication Control Code Indication (optional)
(AC) (FC) (1IN)
0H0000(hex) N, | 1N, | Group | Variation Start | Stop
Delay measure function
MTU request 3 17 | le | ee | 1a]ee|2a]ee
RTU response c3 81 00 00 34 02 07 01 el | ee | al | ee | a2 | ee
Record_current_time function
MTU request c3 18 le|ee | la|ee|2a] ee
RTU response c3 81 00 00 el | ee | al | ee | a2 | ee

(store) system state values at regular session. The
deployment of freeze functions bytes (codes) in both
MTU send request (message) and RTU send
response (message) with security bytes
(cryptography solution) are shows in Table 5

The function bytes (codes) Ox000D, OxO00E,
0x000F, 0x0010, 0x00011 and Ox00012 are the
application_control functions bytes (codes). These
functions are used to control the applications such as
restart, imtialization and start/shop. The deployment
of application control fimetions bytes(codes) in both
MTU send request (message) and RTU send
response (message) with security bytes
(cryptography solution) are shows in Table 6

The function bytes (codes) Ox0013, 0x0014,
0x0015 and 0x0016 are the configuration functions
bytes (codes). These are used to
configure the states (bytes state) such as save,
enable/disable and class assignment while based on

functions

system behavior. Table 7 show the deployment of
configuration functions bytes(codes) mn both MTU

2495

send request (message) and RTU send response
(message) with security bytes (cryptography
solution)

The function bytes (codes) 0x0017 and 0x0018 are
the time synchronization functions bytes (codes).
These functions are used to manage (measure)
session within communication (between stations).
Table 8 show the deployment
synchromzation functions bytes (codes) in both
MTU send request (message) and RTU send
response (message) with secunty bytes
(cryptography solutiomn)

The function bytes (codes) 0x0019, OxO001A,
Ox001B, 0x001C, Ox001D and OxQO0O1E are the
file functions bytes (codes). These functions are
used to handle file states such as open, close, delete,
get status, check security and abort. The function
bytes (codes) from 0x0020 to 0x0080 are reserved and
code 0x001F is uses for configuration
(under development). Table 9 show the deployment
of file synchronization functions bytes (codes) in

of time

activate

J. Applied Sci., 14 (20): 2487-2497, 2014

Table 9: File_functions and response_functions bytes with cryptography implementation

MTU/RTU Application | Function Internal Object field Qualifier Range Encryption bytes Padding bytes
Communication Control Code Indication (optional)
(AC) (FC) (1IIN)

0H0000(hex) IIN,, | 1IN, [Group | Variation Start | Stop
Open file function

MTU request c3 19 46 03 5b 01 le | ee | la | ee | 2a | ee

RTU response c3 81 00 00 46 04 5b 01 el | ee | al | ee | a2 | ee
Close file function

MTU request c3 1A 46 03 5b 01 le | ee [la]| ec [2a | ee

RTU response c3 81 00 00 46 04 5b 01 el | ee | al | ee | a2 | ee
Delete file function

MTU request c3 1B 46 03 5b 01 le] ee| la|ee | 2a| ee

RTU response c3 81 00 00 46 04 5b 01 el | ee | al | ce | a2 | e

Get file information function
MTU request c3 1C 46 03 5b 01 le | ee [1a | ee | 2a | ee
RTU response c3 81 00 00 46 04 5b 01 el | ee | al | ee | a2 | ee
Authentication function

MTU request c3 1D 46 02 Sb 01 le | ee [la]| ee [2a | ee

RTU response c3 1D 00 00 46 04 5b 01 el | ee | al | ee | a2 | ee
Abort file function

MTU request c3 1E 46 03 Sb 01 le|ec | la|ec|2a]ee

RTU response c3 81 00 00 46 04 5b 01 el | ee | al | ee | a2 | ee

Active configuration function
MTU request c3 1F le|ee | la|ee | 2a]| ee
RTU response c3 81 00 00 el | ee | al | ce | a2 | ec
Function code:0x20(32)_0x80 (128): Reserved
Function code: 0x81(129): Unsolicited response | le | ee | la | ee | 2a | ee |

both MTU send request (message) and RTU send
response (message) with security bytes
{cryptography solution)

¢ The function bytes {codes) 0x0000 (confirmation),
0x0081 (response) and Ox0082(unsolicited response)
are the response bytes (codes) and used within
response message (remote station send response to
master station). The response functions (codes) are
also shows in Table 9

CONCLUSION

This study has been implemented a novel solution
designated as “Dynamic Cryptography Buffer (DCB)”
within Distributed Network Protocol (DNP3) stack while
existing security solutions used external memory (space),
durning end-to-end implementations. In proposed study,
the cryptography mechanism as additional security layer
(or layers) 1s successfully deployed within DNP3 protocol
stack and the performance results show that the
“Dynamic Cryptography Buffer (DCB)”
space i3 sufficient for security implementation. This
study gives new security trends to implement and test

allocated

the cryptography algorithms as a potential security
solution, within DNP3 protocol as a part of SCADA
systermn.

In future work, the “dynamic cryptography
buffer” will implement and test in other SCADA protocols
(stacks) Modbus, Fieldbus
because the imtial design of these protocols are also
without any security concerned.

such as and other,

REFERENCES

DNP3, 2005. DNP3 specification volume 2: Application
layer. Version 2.00 Draft K, October 8, 2005.
http:/fwww.docstoc.com/docs/139571815/dnp3-
Application-Layer%E2%80%&E. pdf

Musa, S., A.A. Shahzad and A. Aboryjilah, 2013a. Secure
security model implementation for security services
and related attacks base on end-to-end, application
layer and data link layer security. Proceedings of the
7th on Ubiquitous
Information Management and Communication,
Jamary 17-19, 2013, Kota Kinabalu, Malaysia.

International Conference

2496

J. Applied Sci., 14 (20): 2487-2497, 2014

Musa, S., AA. Shahzad and A. Aboruyjilah, 2013b.
Simulation base implementation for placement of
security services 1n real tume enviromment.
Proceedings of the 7th International Conference on
Ubiquitous Information Management and
Communication, January 17-19, 2013, Kota Kinabalu,
Malaysia.

Shahzad, A.A. and 5. Musa, 2012. Cryptography and
authentication placement to provide secure channel

for SCADA communication. Int. J. Secur., 6: 28-44.

Shahzad, A.A., S. Musa, A. Aborujilah, M.N. Ismail and
M. Irfan, 2013. Conceptual model of real time
infrastructure within cloud computing environment.
Int. J. Comput. Networks, 5: 18-24.

Shahzad, A.A., S. Musa, A. Aboryjilah and M. Trfan,

2014a. A new cloud based supervisory control and
data acquisition implementation to enhance the level
of security using testbed. J. Comput. Sci., 10: 652-659.

Shahzad, A.A., S. Musa, A. Aboryjilah and M. Trfan,

2497

2014b. Industrial Control Systems (ICSs)
Vulnerabilities analysis and SCADA security
enhancement using testbed encryption. Proceedings
of the 8th International Conference on Ubiquitous
Information Management and Communication,
Jamuary 8-10, 2014, ACM, New York, USA.

	2487-2497_Page_01
	2487-2497_Page_02
	2487-2497_Page_03
	2487-2497_Page_04
	2487-2497_Page_05
	2487-2497_Page_06
	2487-2497_Page_07
	2487-2497_Page_08
	2487-2497_Page_09
	2487-2497_Page_10
	2487-2497_Page_11
	JAS.pdf
	Page 1

