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Lattice-boltzmann Method with Immersed Boundary Conditions for
Fluid Simulations of Multiples Species

G. Boroni and J. Dottori
Conicet and Universidad Nacional del Centro, Tandil, Argentina

Abstract: An algorithm to simulate multiples mixtures in single phase with different molecular weights is
presented. The coupling of multiple mixtures with the immerse boundary method is proposed. This algorithm
is designed to model problems of multiple mixtures using Lattice Boltzmann method which in furn can interact
with complex objects modeled with immersed boundaries. The Lattice Boltzmann method is derived from kinetic
theory by discretizing multiples fluid Beltzmann equations in which cross-collisions and self-collisions are
treated independently. The method is validated against analytical solution in diffusion of binary mixtures and

evaluated in ternary mixtures n a curved channel.
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INTRODUCTION

The diffusion of multiple species is a very interesting
problem in many practical applications, for instance,
refrigeration and pollutant dispersion. Since the physics
of species diffusion on a macroscopic scale 13 obtained
from microscopics solutions, the Lattice Boltzmann
Method (LBM) 15 widely used for these types of
applications. LBM was origmated from the lattice-gas
automata which the time and space are discretized to
solve the Boltzmann equation for particle velocity
distribution functions on a regular grid. Recently some
LBM models have been proposed (McCracken and
Abraham, 2005; Asinari, 2005) which use a discretization
of the Bhatnagar-gross-krook models (Bhatnagar et al,
1954) (BGK) derived from the continuous kinetic theory,
such as the models of (Luco and Girimaji, 2003) and
(McCracken and Abraham, 2005).

One of the major weaknesses of LBM, 1s that an
mcorrect implementation of the boundaries conditions
can decrease the convergence of the system. The
boundaries conditions determines how the unknown
distribution functions are defined on the nodes
adjacent to undefined nodes or interacting objects
(Chen and Doolen, 1998). Recently an algorithm
combining the features of the LBM and the Tmmersed
Boundary methods (IB) has been introduced to simulate
fluid-solid interaction (Boroni et al., 2013). Basically
the boundary effect into the surrounding fluid is
replaced by adding forces to the fluid equations.
This algorithm mtroduces a more efficient iteration

procedure to compute the fluid-boundary interaction
which facilitates the implementation and improves
performance.

In this study an algorithm of IB-LBM-mixtures is
presented, with an efficient iteration scheme for
calculation of forces at the boundary pomts. The
algorithm allows simulate fluid-object interaction problems
with multiples mixtures. The algorithm Furthermore,
different problems of multiples mixtures were tested
including mixtures with different initial concentration and
object-fluid interactions m curved walls.

LATTICE-BOLTZMANN METHOD

The most popular LBM divide the space into a
regular lattice (Fig. 1). The grid point of the lattice is called
lattice node and the edge connecting two neighboring
nodes 1s called lattice link. In D2Q9 model, for each node,
there are a total of 8 neighbors with 8 links to connect
them, plus the node itself.

The particles are located on each node and they can
move from one node to their neighboring nodes on each
computation step. This movement 1s often called
propagation or streaming. So, there are 9 possible
motional states for each particle, including the stationary
state.

In LBM one real value is used to denote the
number of particles on each state and each node at a
specific time. This real value is called the particle
distribution function value (distribution function for
simplicity), denoted as f, = 0,8 These real values
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Fig. 1: Space of discrete velocities in LBM-D2(9,
corresponding to the population functions f,

represent the statistical probabilities of distributions in
the specified directions. The macroscopic physical
properties density and velocity can be statistically
defined as:

(1)

(2

1
u= E;f\xeuc

Collision and streaming: From the density and velocity
definitions, it can be seen that these variables depend on
the distribution functions at each node. The local
operations that update these functions are collision and
streaming:

f, (x+e,d, t+d)-f, (x,t) =Q, 3
where, (, is a collision operator, that should ensure that
mass and momentum are conserved. The BGK model 1s
the most popular collision operator; with external forces
1t takes the form:

Q. =1, (x, 0+F, (x, 09, )

)

_l(f

3 (xt) == {L(x 1) -C{pu))

where, f; is an equilibrium distribution function, F{x, t) is
the forcing term and T is a relaxation time related to
viscosity v

260

(6)

The viscosity should be positive (1>0.5).

LATTICEBOLTZMANNFORMULTIPLE MIXTURES

The LBM discrete equation for multiple mixtures
proposed by Luo and Girimaji (2003) can be represented
by:

(7

fow (X te,d,t+ St)7 L (X’t) =Joy —Fopy + zlmm'st
An¥

where, ¥ and A are species, T, is the self-collision term:

Zlmm'st

A2

is the cross-collision term and F .0, represents the effects
due to an external force. The self-collision term 1s derived
similar to single fluid LBM:

1
To=——
o Tw

(8)

(pr - fiw)

The cross-collision term 1s derived from the two-flud
theory under the isothermal assumption of the system:

_lp
T, P S

(%)

I
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where, T, is the cross-collision coefficients that determine
how strong the diffusion effect is of the mixtures, py, pa,
Uy, U, are the density and velocity of the each specie, p
and u are the density and velocity of the mixture, f, is
the equilibrium distribution function and «, =1/43  is the
speed of sound in LBM.

The external force F o 1s:

!
P
CS

Ey=—w,py = (1 0)

o

where a, represents an external acceleration force and w,
is the weighting function that depends on the discrete
velocity set e,

The equilibrium distribution function 1s given by the
following equation:

(11)

£, - 1+%(efu)-(uwu)}f;¢
C

s

where, £ is the equilibrium distribution function to single
fluid LBM-BGK, defined by:
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The macroscopic variables for each species are found
from the moments of the distribution functions and can be
represented by:

Py = wa (1 3)

And:

Pyly = Zf\x‘Fem (1 4)

The total density and mass averaged velocity of
mixture are:

P=Tp, (15)

pu = Zp/\u/\ (1 6)

The pressure in this model is given by:

P=c 2P, a7

And 1t 13 equal to the sum of the partial pressures.

The self-collision effect 18 adjusted with the
relaxation coefficient Ty, so the different viscosities can be
represented.

General step of LBM for multiple mixtures: This section
briefly describes the algorithm that combmes Eq. 7-16 in
one step of the LBM method. The main body of the
implementation can be described as follows:

Fort=0:

o [ = fo. Ty = Ty imtialize the distributions
functions and select a relaxation coefficient for all
species P

¢ Fortz0
For all species ¥:

Py = qu&'

Uy = szm\lfem
Py "o

compute the macroscopic density and velocity

*  Compute the equilibrium distribution fimctionfy, | the
self-collision term |, and cross-collision term 31,
and the external force F o

s Take the propagation and collision operations:

G (Xt e At +A ) =100 (1) 10 — EpA + 3 LA
Az

and apply boundary conditions
s t=1tt+At, move forward to next time step

IB METHOD

In this method, the immersed boundary is supposed
to consist of massless particles, such that the force
generated by distortions of the boundary can be
calculated and transferred to the fluid (Cheng and
Zhang, 2010).

Figure 2 shows a 2D example with immersed
boundary particles {(closed). The boundary and the fluid
domain are denoted by I', and €, respectively.

X(s,t) is a Lagrangian vector function of arc
length s and time t and returns the location of points
on boundary TI,. The boundary influence is
represented by a force density D(s, t) at the boundary
point X(s, t). Thus, D(s, t) is determined by the
configuration of X(s, t) and it is transferred into the
force term f in the N-S equations which are solved to
determine the flow velocity and pressure throughout
domain £,

The immersed boundary moves at the local fluid
velocity since it is in contact with the surrounding fluid.
This scheme may be expressed by the following
equations:

Vu=0 (18)

S

XEh =i g s

Z(s 1)

Fig. 2:Immersed Boundary and lattice scheme (the
boundary I',, fluid Q, boundary point X(s.t), target
position of the boundary 7Z (s,t) and boundary
pomnt influence ¢)
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PO VII) = -Vpr- (19)
Bp=Uien= faeosxoop 20
D= SX (5,1 1)

R (1) = [D(s03(x X5, 0)ds (22)

where, u 1s the flow velocity, p the fluud density, p the
flow pressure, p the fluid viscosity, F, the external force,
X the boundary coordinate, s the boundary fiber length,
T the boundary speed, X the fluid flow coordinate, S; the
boundary force generation operator and 8(r) the Dirac
delta function.

Equations 18 and 19 are the incompressible N-S
equations with external force g while Eq. 20 and 21 are the
immersed boundary equations. Equation 22 and the right
part of HEq. 20 represent the interaction of boundary and
fluad.

Discrete interaction: The interaction between fluid nodes
and boundary points is ruled by integration in the
continuous Eq. 20 and 22. The discretized equations of
Eq. 20 and 22 using a regularized discrete delta function §,
are:

K= ;Dkah (X i X )Ask (23)

dx
d—t‘* =U, =3 ud, (x;— X, ) AxAy
ij

(24)
where, h = AX = Ay 1s the fluid node spacing and As, 1s
the boundary segment length. The delta function d,
is an approximation to the Dirac delta function &8(r)
(Peskin, 2002):

5,(x.¥)- hint[%}t[%] @5)
%(372\4 +,ﬁ +4|r|—4r2), o< <1,
4(r)= @9)

1 5
g(5—2|r\—,}—7+12\r\—4r ) 1=|r|<2,

0, |fz2,

The boundary force density D 1s defined by the
boundary configuration. For I'y with tension, bending and
fastening forces, D can be expressed by:

&'

&x
)

cag K ~ke (X -Z) 27
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where, k_ is the tension stiffness, I the bending rigidity,
k; the fastering stiffness and 7 the fastening or target
position of the boundary. The discretized equations
of Eq. 27 can be expressed as:

e e

IB-LB MULTIPLE MIXTURES COUPLING

K —2X, + X,
As?

Komg =X +6X, 4K + Xy
As

j- K (X-Z)
(28)

For problems with slow moving boundary or flexible
boundary with small pressure gradient, the external
foreing term F . (Eq. 7) doesn’t affect the result but for
fast moving boundary and flexible boundary with large
pressure gradient, a higher order method 1s necessary. For
this problem let us consider the solution proposed by
Cheng and Zhang (2010), a second-order convergence
scheme defined by:

E.d, (29

B

%(Fm (x08) +E (3, 6,81 +5,))

Where:

Fbcc(xij: t=w, {beij.[(ecc'uij)+3(ecc.uij)eoc]} (30)

The Eq. 30 has a second-order accuracy for spatial
resolution of fluid, as the original LB model (Borom ef af.,
2013). As Eq. 29 1s implicit, an iterative procedure 1s used
to solve it.

Algorithm:
Fort=0

¢ X =Z ,puw:pw,ui,:uﬂ
fw =

wo, Ty = Typ initleﬁizlgkthe digributions finctions and select a
relaxation coefficient for all species ¥
Fort=0
For all species ¥
» Execute the collision operation 23, , compute the equilibrium
distribution function f°, , calculate self-collision term Iy and
cross-collision term:

Zlmm

feT
¢ n=0,X, =X,
Repeat:

+» n=n+1
¢ XD =X, A S, (x - X7 )AxAy
ij

IS {X:J _ ZXE + X:+1J7 I {
] ASE ¥
£ = 5D, (x, - X )as,
k

B = Wy, {31";J . [(eﬂL - u:J‘") + 3(

For all species ¥
+ Take the propagation operation

. Ky 06, 1
k= e

Jrb-a)

n-1
€y Uy

Je. }
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Algorithm: Continue

fre (x,J +e M, t+ At): £ . +7T

o T aly
with:

™

T

=5 (w,t) and g

T

fow (xij,t)
B o_~opn nom _ogn
* Py mew:pwu Er me‘l’xjea
- -
" nonm non
* Pl = 2P PRV = 2Py
n n

compite the macroscopic density and velocity
Until |0y - 03| <=
S D= G Py =P 0y =0 G =X By = By

+ t=t+At move forward to next time step

RESULTS AND DISCUSSION

Validation of multiples mixtures: The model has been
validated by simulating the diffusion process of two
binary mixtures with different initial concentration and
comparing the concentration over tine with the
corresponding  analytical solution (Tncropera and
De Witt, 2002; Arcidiacono ef al., 2006). Setting D;=0,
Ko =0 and performing only one iteration in the coupling
region, problems without IB contours can be simulated. If
my 18 the molecular mass of the specie P, thus:

Uy Py =My mewem (32)

The channel size is 4x400 cells, periodic boundary
conditions in the X-direction, bounce-back boundary
condition (Chen and Doolen, 1998) in the y-direction,
Tr = Ty, I and A are species with m,/m~100, 60%A-40%T
for x<0, 40% A-60% I' for x>0. Figure 3 shows the
analytical and nmumerical solutions of the molar fraction
Xy = ny/m, where, ny = py/me the molecules per umt
volume and n=3"n, . The numerical solution agrees fairly
well with the analytical solution.

Semi-circular chamnels with a ternary mixture of
species n this experiment the separation of three species
through a curved channel 1s studied. Figure 4 shows the
design of a semi-circular channel which is implemented
through IB points. The grid dimensions are 100x100
cells. The IB pomts are spaced by 0.5 cells umts. The
species are named a, bandc,T,=71,=71,=0.75, m,= 2.0
m, = 1.98 m, = 0.22. The channel has a parabolic input
velocity profile, with particles uniformly distributed, where
the peak velocities are u,; = u,; = u,; = Se-4. Initial densities
are P,y = 3.8 Py = 0.87 p, = 0.88. After 5000 tume steps, a
laminar flow in stationary state is obtained. The channel
shape introduces a centrifugal-like force and due to mass
difference a redistribution of the particles 1s produced
along the chamnel (Fig. 5).

Figure 6 show the density profiles (p., pw, p.) in a
flattened graph, where the area with the best separation
(with darker colors on the bottom) can be observed and
depends on the input speed.

Pa :mwzfmw (31)
0.60- — @ -On
T A
N ‘\ )
0.55-
< 0.50-
0.45-
0.40-

Time step
-0~ 500
-0-2000
-4 5000
= 10000

-400 -200

Fig. 3: Diffusion of a binary mixture in transitory state (molar fraction XI" = ny/, with respect to the transverse position

Y)
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Fig. 6: Density py (Eq. 13) profiles through channel direction of (a) specie a, (b) specie b and (¢) specie ¢
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CONCLUSION

An algorithm to implement the Immersed Boundary
method in a Lattice Boltzmann scheme for multiple
mixtures was presented. The IB enables the generalization
of complex boundaries, instead of LBM regular grids. The
model 15 simple and its implementation 1s straightforward.
Numerical experiments where used to validate results.
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