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Water/Carbon Dioxide Phase Equilibria Using Thermodynamic Perturbation Theory
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Abstract: The Cubic Plus Association (CPA) and the Statistical Associating Fluid Theory (SAFT) are
theoretically derived based on pertwbation theory using Wertheim theory by considering the effect of
hydrogen bonding on thermodynamic properties of associating fluids. These EoS are applied to predict the
phase equilibrium of pure water and carbon dioxide system at different temperatures and pressures. A
comparison has been made between those EoS and the widely used cubic EoS such as Soave-Redlich Kwong
(SRK) and Peng-Robinson (PR) EoS. Satisfactory predictions are obtained for CPA and SAFT EoS and the
analysis of results show that these theoretically derived models can successfully predict the pure water and
carbon dioxide system even with zero binary interaction parameter.
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INTRODUCTION

Phase equilibria description s important in chemical
engineering and petroleum engmeering applications such
as refinery, petrochemical, fluid separation and gas
mjection processes. The systems become complicated
with the presence of associating compounds with
hydrogen bonding like water, methanol and glycols at low
and high pressure and temperature.

Soave-Redlich Kwong EoS (Socave, 1972) 1s suitable
for light hydrocarbons (C,-C,;) and simple water handling
and Peng-Robinson EoS (Peng and Robmson, 1976) 1s
superior m predicting liquid densities especially for
nonpolar materials. However, these cubic EoS were
developed for hydrocarbon mixtures prediction. In the
presence of water, although one can argue that water is
inert phase, its mutual solubility with carbon dioxide
becomes significant once it reaches high temperature
and pressure. At the same tume, the conventional cubic
EoS cannot satisfactory predict systems near critical
reglomn.

To describe the systems contaiming associating
compounds, empirical/semi-empirical modifications of
cubic EoS or more theoretically-based EoS models that
account for association are needed. For example, mixing
rules (Huron and Vidal, 1979; Wong and Sandler, 1992)
can be applied to combine with cubic EoS to describe
polar compounds and asymmetric systems. However,
those mixing rules are semi-empirical and their prediction
results can be questionable. Based on numerous
mvestigations m finding more reliable EoS for associating
fluids, more theoretical insights EoS have been derived

from chemical theory (Ikonomou and Donohue, 1986),
from perturbation theory with SAFT EoS (Chapman et al.,
1990; Huang and Radosz, 1991), the Group-Centribution-
Associating (GCA) EoS (Gros et al., 1996) and CPA
EoS  (Kontogeorgis et al, 1996) and from the
lattice/quasi-chemical theory (Panayiotou and Sanchez,
1991).

In this study, SRK, PR, SAFT and CPA-PR EoS
are applied to model, the Vapor-Liquid Equilibnia (VLE)
and Liqud-Liquid Equlibria (LLV) of water/carbon
dioxide system at specific temperatures and pressures.
The performance of SAFT and CPA-PR EoS for the
correlation of pure water and carbon dioxide phase
equilibrium is examined and compared with PR and SRK
EoS.

CUBIC PLUS ASSOCTATION-PENG ROBINSON
(CPA-PR EoS)

Cubic Plus Association-Peng Robinson (CPA-PR
EoS) was developed by Kontogeorgis et al. (1996) and it
has the physical term from PR EoS and associating term
from SAFT EoS where the association term based on
Werthein (1984a, b, 1986a, b, ¢) first-order thermodynamic
perturbation theory assumptions. The CPA-PR EoS can
be expressed mathematically by:

RT aa 1{RT 10hng
= |1+ Ya-x
PEVh V(V+b)+b(V-b) z( v ] v ZX‘E;( u)
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p = System pressure (psi)

T = System temparature (°R)

R = Gas constant (10.73 psi-ft’/lb-mol °R)

V = Molar volume (ft*/mol)

a = Attraction parameter

b = Repulsion parameter

¢ = Temperature correction parameter

X% = Fraction of A-sites of molecule 1 that are not
bonded with other active sites

x;, = Mole fraction of component 1

CPA-EoS has
accounts for non-associating compounds and associating
compounds. The a, b and ¢ parameters for PR EoS are
given by:

pure-compound parameters that

RT?
a=045724"—¢ 2
pE
b = 0.07780 ke 3

[

o =[1em(1-T)] )

Where:

p. = System pressure (psi)

T, = System temparature (°R)

T, Reduced temperature (T/T )
0.3796+1.542260-0.2699w"

m
or:

m=0.379642+1.48503w-0.1644w*0.016667w’ (for 1v=0.49)
(3

where, w 1s accentric factor of pure substance.
In association term in Eq. 1, X,; can be calculated by:

1

1 .
H{VJEJ'XJEBJ'XBJAAIB]

X4 =

(6)

Where:

B, = Summation over all sites

A%P = Association (binding) strength between site A
onmolecule 1 and site B on molecule | with:

Aty
~1 b, p® (7

AA‘B] _ g(v)ref

Table 1: CPA parameters for pure fluids

Fluid a b ) £ 8

COy 3.9631 0.0267 0.2200 0.0000 0.0000

H0 4.2562 0.0160 0.0000 22586 0.0185

Where:

e Association of energy between site A of
molecule I and site B of molecule j

p*® = Volume of interaction between site A of molecule

I and site B of molecule j
g(v¥* = Contact value of the radial distribution function
for the reference fluid

Radial distribution function can be expressed as:

of 0o 8
BV = Sy ®)
n—(;v]b ©

where, 1) 18 reduced fluid density.

For the extension of CPA-PR EoS to mixtures, mixing
rules are needed for PR EoS parameters. Combimng rules
for the association energy and volume parameters are
needed between different associating molecules with 1#].
In this case, water 1s modeled as (3B) molecules based on
terminology of Huang and Radosz (1991). The parameters
for all associating and mert compound used 1n this study
are shown in Table 1.

STATISTICAL ASSOCIATING FLUID THEORY
(SAFT-EoS)

The Huang and Radosz (1991) developed the
SAFT EoS using Chapman et al. (1990) general statistical
associating fluid theory approach based on Werthein
(1984a, b, 1986a, b, c). The SAFT EoS is expressed in
terms of residual Helmholtz energy a™ per mole with a*
ideal gas Helmholtz energy per mole and the sum of
another three terms that represent different
intermolecular forces contribution. The three terms are a™@,
segment-segment interaction forces with hard-sphere
repulsive and dispersion interactions, a™" covalent
chain-forming bonds forces among the segments and
a™*, site-site specific interactions forces among
segments. The general expression of those Helmholtz

energies 1s given by:
Qe = 1dEal+asEg+acham+aassuc (1 0)

seg

The segment Helmholtz energy &, per mole of

molecules, 13 expressed as:

a*™ = ma,’* (11)
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Where:
a,"® = Residual Helmholtz energy of nonassociated
spherical segments (per mole of segments)

m = Segment number

The a,”® is the summation of hard sphere and
dispersion parts where:

aUseg — auhs+auchsp

Based on Carnahan and Starling (1969), the hard
sphere term, a,* is proposed as:

8" _dn-3n’ (12)
RT (1-nm)
1 = tpmy’ (13)
VD — ﬂ:NAv d3 (14)
61T
v = N, = (15)
6T
—3u°
d=ol1-C (16)
et |
u:u°{1+i} (17)
kT
Where
= Reduced fluid density

n
T = 0.74048
p = Molar density (mol/A™)
m = Segment number

v’ = Temperatre dependent segment molar volume

mL mol™ of segments

N. = Avogadonumber
d

= Effective segment diameter (temperature
dependent)
v" = Temperature independent segment molar volume

(mL mol™ of segments)
= Temperature independent segment diameter (A)
= Temperature independent dispersion energy of
mnteraction between segments (K)
Integration constant (C= 0.12)
= Constant related to Pitzer’s acentric factor and the
critical temperature

mlaod =20
I

The dispersion term 1is a power series fitted by
Alder et @l (1972) and 1t 1s given by:

ozl

where, D, is universal constants.
Based on Chapman et al. (1990), both chain and
association terms are given by:

1
chiain 1 - _T]
a =(1-m)jln 2 s (19)
RT (1-m)
assoc A
L =% mx X Iv (20)
RT < 2 |2
With:
A _ [1 " NAvi BpXEAAE] (summation over all sites: A, B, C,...)
(21)
4B g e 31, AB (22)
A =g (d)™® | exp| =— | -1|(c'k
1 1 M
26 5 Ty 23
g(@)™ = g(a)" = —2 @
(1-m)
Where:
M = Number of association sites on each molecule
X* = Fraction of A-sites of molecule 1 that are not
bonded with other active sites
Y. = A sum over all associating sites on the molecule
A*® = Association (binding) strength
N,, = Avogadro’s number
g(dy™® = Segmental radial distribution function

The temperature independent segment diameter o
which can make k** becomes dimensionless from Eq. 22
can be obtained by rearranging Eq. 15 as follow:

1/2
G_{ 67 vw} (24)
TN

Av

Up till recently, various modified versions of SAFT
like VR-SAFT (Gil-Villegas et al., 1997) have been
developed. Some of the terms i SAFT are similar and
explained in CPA EoS previously. Same like CPA EoS,
water is modeled as (3B) molecules. The terminology of
Huang and Radosz (1991) 1s used for association
schemes. The parameters for all associating and inert
compound used in this work are taken from Pfohl et al.
(1998) as shown in Table 2.

Table 2: SAFT parameters for pure fluids

Fluid u/k Vg m gt Kt nk
CO, 216.08 0.0136 1.417 0 0 40
H,O 574.96 0.0123 1.000 19404 0.0117 1
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METHODOLOGY

Data collection: Water/carbon dioxide VLE and LLE
experimental data have been collected from Todheide and
Franck (1963) at 573.15 K, Wiebe and Gaddy (1939) at
323.15 and 304.19 K, Muller ef al (1988) at 373.15 K and
Pfohl ef al. (1998) at 373.15 K.

Modeling software: The program PE (Phase Equilibria)
(Pfohl et al, 1998) has been applied to predict the
water/carbon dioxide phase equilibria. The PE was
developed by Professor Brunner’s research group at the
Technical University of Hamburg-Harburg starting in 1985
to correlate phase equilibria especially those at high
pressure that are related to gas-extraction processes. The
PE offers around forty different equations of state with up
to seven different mixing rules for correlating phase
equilibria.

Sensitivity analysis: There are a lot of uncertainties
during phase equilibria calculations since most of
the parameters are correlated empirically from experimental
data. These parameters include critical pressure, critical
temperature, vapor pressure and its densities, acentric
factor, EoS parameters and interaction parameters.

In this study, a sensitivity analysis has been
conducted for the uncertain interaction parameters. The
binary interaction parameters have been set to zero
interaction parameters; interaction parameters based on
literature (Pfohl et al, 1998) and optimized interaction
parameters.

RESULTS AND DISCUSSION

As mentioned previously, a sensitivity analysis has
been conducted with three different sets of binary
mteraction parameters for PR, SRK and CPA-PR EoS and
SAFT EoS. The main focus of the sensitivity analysis is
to optimize binary interaction parameters generated from
PE software. The optimum representation of phase
equilibria in mixtures for HoS, mixing rule and pure
component parameters depends on correct choice of
mixture parameters, especially when the initial predictions
for the system were not good.

Based on predicted data, the optimized binary
interaction  parameters match satisfactorily  with
experimental data. At different temperatures, the CO,
solubility in H,O is increasing with pressure. From the
results, SAFT and CPA-PR EoS predictions give much
better predictions as compare to PR and SRK EoS during
zero binary interaction parameters. Meanwhile, SRK and
PR EoS can predict well at low pressure. However, SRK
and PR EoS performed very bad at high temperature
and high pressure (near critical points) as shown in
Table 3. In this study, the binary interaction parameters
are found to change in the range from -0.25 to 0.3.

Table 4 presents the error analysis of the prediction

data usmng average absolute deviation percentage
(AAD%). The predicted data with optimized binary
interaction parameters can be summarized as:

+  At304.19K (SAFT 1.57%=>CPA>SRK=>PR)
«  At32315K (SAFT 1.19%=>CPA>PR>SRK)

» At 37315 K and high presswes (CPA
1.76%=PR>SRK=SAFT)
» At 37315K and low  pressures (SRK

0.6%>PR>CPA>SAFT)
o At573.15K (CPA 11.23%>SAFT>SRK >PR)

In terms of graphical presentations, the solubility of
CO, mn water at different temperatures for all selected EoS
with optimized binary interaction parameters are plotted in
Fig. 1-4 while the solubility of CO, in water for individual
EoS at different temperatures are plotted in Fig. 5-8 to
examine the performance of each EoS. From these figures,

600
EXP Points: Expermental data
PR Lines: EoScalculation
500 SRK
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& 400 CPA-PR
=)
—
<
© 300
& 200
100
0- —

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035
CO; mole fraction

Fig. 1: Solubility of CO, in water at 304.19 K

800
EXP Points: Expermental data
700 PR Lines: EoS calculation
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CPA-PR
? 500
o
-
= /
© 400 i
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o
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Fig. 2: Solubility of CO, in water at 323.15K
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350 800
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Fig. 6: Solubility of CO, in water at different temperatures
Fig. 3: Solubility of CO, in water at 373.15 K using optimized binary interaction parameters for
SRK prediction
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Fig. 7: Solubility of CO, in water at different temperatures
Fig. 4 Solubility of CO, in water at 573.15 K using optimized binary interaction parameters for
SAFT predictions
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Fig. 5: Solubility of CO, in water at different temperatures Fig. 8 Solubility of CO, in water at different temperatures
using optimized binary interaction parameters for using optimized binary interaction parameters for
PR prediction CPA-PR predictions
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Table 4: Average Absolute Deviation (AAD) between various thermodynamic models at different temperatures using optimized binary interaction parameters

PR SRK SAFT CPA-PR
1 2 3 1 2 3 1 2 3 1 2 3

Temperature (K) Pressure range (bar) (YA AD)

304.19 2533000-30663000 75519 27643 8.006 67489 28203 7.208 19.670 14900 1.569 195363 12,052 3.212
323.15 7399000- 70928000 73340 27551  6.015 65699 27319 7104 18.314 13002 1.19%4 16180 10,372 3.381
373.15 10000000-30000000 25753 27.297 2058 25542 27489 2234 9.858 2965 2760 7.387 3044 1763
373.15 325000-1816000 12474 27192 1.776 14104 26030 0.601 15.348 26495 9.250 12,702 7807 2.916
573.15 20000000-60800000 63.066 36.593 13.528 62.882 35118 13.167 30.631 26391 12.532 24558 20,965 11.233

e
%AAD = lE %i "% 14100 where x stands for mol fraction and n is the number of cxp erimental data pants
n 1

it can be seen that the SAFT and CPA EoS prediction
lines match closely with the experimental data except for
low pressure data at 373.15 K.

CONCLUSION

In this study, two theoretically based EoS, the SAFT
and CPA FoS with the consideration of hydrogen
bonding effect were used to model the water/carbon
dioxide system at both low and lugh pressures. It was
found that SAFT and CPA EoS are in better agreement
with experimental data especially at critical region of pure
components.

Binary interaction parameters using optimization
techniques can greatly enhance the prediction results.
However, the optimized binary interaction parameters only
worle well in the specific sets of data. Both SAFT and CPA
EoS can perform satisfactorily for the range of conditions
using zero binary interaction parameters.

Although SAFT and CPA EoS represent better the
system examined here, the conventional cubic EoS can
predict very satisfactorily and even better than SAFT and
CPA EoS at low pressures.
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